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SECTION 1

INTRODUCTION

1.1 Scope

Volume 2 of the present report givez an account ef theoretical

advances and associated demonstrations made during the reporting period

relating to the synthesis of active controllers for large flexible

structures. Particular applications discussed include the quenching of

vibrations in support structures for optical pointing systems and the:4 efficient generation of closed-loop large-angle slewing maneuvers for

linear tracking. Certain aspects of discrete-time dynamic modeling for

structural vibration control are also treated in depth. The vehicles for

the demonstration examples are the ACOSS Model No. 2 representation of an

optical pointing system (for vibration control) and a rotating rigid hub

with four flexible appendages (for large-angle slew control). A concise

summary of the principal results contained ih the present volume is given

in the remainder of Section 1.

1.1.1 Vibration Control

Effective accommodation of disturbances is fundamental to closed-

lc.ýp regulation, being especially vital for the quenching of vibrations

in large flexible optical pointing systems. Accommodation of a (small)

finite number of periodic disturbances at fixed knain frequencies poses

only mild difficulty. Substantially wore difficult is the problem of

accommodating an aperiodic disti:2bance having nonnegligible power

spectral density across a broad range of frequencies. In the preceding
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reporting period, a scientific experiment was conceived to examine the

que2tion of active control synthesis for broadband disturbance accommoda-

tion in which the selection of reduced-order models and of active

transducers were to be given substantial consideration.

Sections 2 and 3 of the present volume taken together constitute

an initial account of progress in the study of broadband disturbance

accommodation for large flexible optical pointing systems. The

disturbance to be neutralized has a constant nonzero power spectral

density over the frequency range between 0 and 5 Hz. In the first part

(Section 2), attention is focused primarily upon the selection of active

transducers, both by functional type and by location. The theoretical

ba3is of a recently-developed selection algorithm is fully described; the

principal elements are full-rank matrix factorizations -- in particular,

the QR-decomposition -- and their employment in the representation of

solutions to least-squares approximation problems. The algorithm is

designed to select a relatively small number of actuators that have a

relatively high irflueuce on the variables to be regulated (in this case,

optical system pointing errors). Results of four examples with ACOSS

4odel No. 2 demonstrate that selections are readily achievable that are

-iubst•-atially fewer in number than the number of controlled modes, and

yet give promise of effective performance. In the second part (Section

3), attention is shifted to the design and evaluat:on of controllers for

ACOSS Model No+ 2 associated with the four active transducer selections

described in Section 2. The controller feedback structure is generated

using a textbook disturbance-rejection control design. Attempts at

stability-enhancing adjustments beyond meeting the specifications on the

optical pointing error are deliberately postponed in order to isolate the

influence upon the overall synthesis-process of the selection of reduced-

order imodels and of active transducers, including their mutual inter-

action. In each example, the effect of unmodeled modes upon control

system stability and performance is examined using an expanding family of

reduced-order evaluation models. In the evaluations, closed-loop

1-2
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stability over a range of frequencies substantially beyond that of the

design model is demonstrated.

In the modeling of dynamic systems, state space representation

provides a vnificd framework which abstracts certain system-theoretic

characteristics common to a wide variety of physical systems. The

resulting separation of dyramic characteristics from specific physical

processes provides beneficial clarification. However, it has the

disadvantage of masking the physics of the problem. The sharpened

understanding that follows from taking into account the unique

characteristics of a specific physical process usually increases the

performance achievable from a process controller. In this spirit, a

frý-3h approach to sampled-data control for flexible structurea is taken

in Section 4 1- which second-order difference equations provide the

dynamic model. For the problem of velocity output feedback, explicit

sufficient conditions for stability in terms of the feedback gain matrix

and the sampling rate are given. Surprisingly, these conditions require

non-colocation of actuators and sensors as a function of the sampling

rate. The non-colocation property collapses to the familiar colocation

property for analog systems as the sampling period converges to zero.

1.1.2 Large-Angle Slew Control

Large-angle slewing maneuvers for flexible spacecraft generally

require the consideration of aionlinear structural dynamics. However

certain problems of substantial interest for applications require only

the consideration of linear autonomous structural dynamics. Several such

proLbems are formulated and solved in Section 5; namely, the problem of

optinally tracking a known trajectory (without hard terminal

constraints), and the pcoblem of optimal line.ar slew in which the

terminal values of some or all of the state variables at a fixed finite

terminal time are prescribed. The emphasis is upon obtaining explicit

expressions for soluticas of the necessary conditions for optL.tality in

terms of matrix parameters which are solutions of linear algebraic

1-3



equations. The problem of computing solutions is thereby reduced from

one of numerical calculus (i.e., integration) to one of numerical linear

algebra. Significant increases in computational efficiency restating

from this approach are demonstrated with a variety of examples on a

rotating rigid hub with four flexible appendages. The method of

obtaining explicit solution exp-,'essions is also shown to have direct

application to the efficient generation of feedback control solutions to

the general unconstrained fixed time linear optimal uontrol problem.

1.2 Limitations

The scientific expe-Ament relating to active control synthesis for

broadband disturbance acr .modation is incomplete. Projected work
includes:

(1) Expansion of the class of candidates from which active

transducers are selected;

(2) Examination of the interaction between the selection of

reduced-order models and of active transducers; and

(3) Modifications of the controller feedback structure to ensure

an acceptable compromise between the requirement to

neutralize the effects of disturbances, and the limitations

imposed by an incomplete knowledge of structural and

disturbance characteristics.

1
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SECTION 2

PROGRESS ON SYNTHESIS OF ACTIVE CONTROL FOR BROADBAND

DISTURBANCE ACCOMMODATION

PART 1: ACTIVE TRANSDUCER SELECTION

2.1 SIackground

In the automatic control of dynamic systems, the achievement of

stability and a specified levý.i of performance, in spite of anticipated

disturbances, is fundamental. When the object of control has substantial

inherent flexibility, the problem of accommodating disturbances is

aggravated by the tendency of the disturbances to excite structural

I vibrations. Even with flexible structures, the effects of.a few periodic

disturbances at known frequencies are relatively easy to accommodate.

However, when the frequency of periodic disturbances is unknown or

variable, or when the disturbances are aperiodic, disturbance

accommodation is much more difficult. Relatively little has been written

regarding accommodation of the latter class of disturbances in the

context of large flexible structures. One careful study treating

S-I unknown-frequency periodic disturbances (Ref. 2-1J has reported moderate

success. It is notable that the treatment reported gave careful

attention to the placement of active transducers (i.e., actuators anc

sensors). The only study available to date on accommodation of aperiodic

disturbances with a continuum frequency spectrum ("broadband") in the

context of large flexible structures (Ref. 2-2] als' reports m-s•erate

success, without however, giving any attention to the selection of active

S. . . . . . . . . . . . . . . .A. . . . . . . . . . . . < . . .



transducers beyond the analysis developed for accommodating periodic

disturbances of known frequencies [Ref. 2-3].

The presence of a broadband disturbance escalates the importance

of giving careful attention to the selection of reduced-order models, the

selection of active transducers, and the interdependence of these two

selections. In Reference 2-4, we outlined a scientific experiment (not

in hardware) for the purpose of systematically investigating the impact

upon the performance of active broadband disturbance accommodation ot

various assumptions relating to the selection of reduced-order models and

of active transducers. This ex 9.riment is not a single design attempt,

but rather a process involving a sequence of many variously-constrained

designs, in order to converge on an appropriate overall algorithm for

broadband disturbance accommodation with large flexible structures.

Sections 2 and 3 of the present report constitute the initial

report of progress in the conduct of the aforementioned experiment.

Section 2 focuses principally on the theory and application of the active

transducer selection strategy being employed, while Section 3 focuses on

the related matters of controller design and evaluation. Two very

encouraging trends have emerged from the results reported herein:

(1) Under appropriate assumptions, substantial reductions in the

number of active transducer pairs below the number of controlled modes

are feasible, which implies substantial design flexibility may be

available; and

(2) Using an expanding family of evaluat.on models, stability of

reduced-order controllers over a frequency range well beyond the range of

the design model has been demonstrated.

The significance of item (2) is that sophisticated adjustments of the

controller design have been deliberately postponed; this result reflects

principally the reward of careful attention to active transducer

selection.
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The remainder of Section 2 is briefly summarized. The active

transducer selection strategy being employed in the scientific experiment

was briefly outlined in a previous report (Ref. 2-5, Sec. 3]. In Section

2.2, a complete account of the theory that underlies this strategy is

given. In addition, all phases of the strategy are fully discussed in

the light of the theoretical building blocks. In Section 2,3, a number
* of applications of the selection strategy to ACOSS Model No. 2, under

varying assumptions, is presented. In Section 2.4, some principal

observations on the results are made. An appendix, Section 2.5, contains

the proof of some technical matters that arise in Section 2.2.

2.2 Theory: A Selection Algorithm

Most strategies for active transducer selection reported in the

literature use appropriately-defined indices of controllability and
observability to evaluate alternatives. The selection strategy proposed

and briefly outlined previously [Ref. 2-5, Sec. 3] approaches the

selection problem from a different direction. Linear combinations of the

modal influence vectors associated with each actuator are sought which

best approxin•%te the modal coefficient vectors of variables to be

regulated (e.g., line-of-sight errors in an optical system). The

principal theoretical building blocks of this strategy are the special

properties of full-rank matrix factorizations (in particular, the

QR-decomposition) and the representation theory for solutions of least

squares approximation problems. In what follows, a complete though

concise account of this underlying theory is necessary to enable a proper

description of the construction and operation of the selection algorithm.

2-3



2.2.1 Fundamental Concepts

As will be seen shortly, least-squares approximation problems lead

naturally and directly to the Moore-Penrose generalized inverse. This

construction exists for arbitrary rectangular matrices A: nxm, but is not

quite so direct in the case that the inequality

Ak = rank(A) < min {n,m} (2-1)

becomes strict. In that case, the ability to decompose A into factors is

extremely helpful. A decomposition of the form

A = BC (2-2)

where B: nxk and C: kxm satisiy

rank(B) = k = rank(C)

with k defined by Eq. (2-1), is called a full-rank factorization of A.

:t is well known that every matrix has such a factorization [Ref. 2-6].

Although such factorizations are not unique, the class of all such

factorizations is generated from a known factorization by the relations

B = BY , C = y-C

for some nonsingular matrix Y (Ref. 2-7]. Full-rank factorizations

assune great importance in numerical linear algebra (Ref. 2-8].
Essential to the selection algorithm to be described later is the QR-

decomposition (Ref. 2-9], which always has embedded within it a full-rank

factorization.
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2.2.1.1 The QR-Decomposition

The classical Gram-Schmidt orthugonalization [Ref. 2-10, pp.

1 27-1 261 is a constructive process of transforming a set of linearly

independent vectors in an inner-product space into an orthonormal set.

The matrix representation of the result is the QR-decomposition. It

follows that every matrix has a QR-decomposition, whose specific

structure depends on the rank of the matrix. Since the results are

thoroughly discussed in the literature (e.g., Ref. 2-11], the parts

relevant here are simply quoted.

Theorem 2-1 (Existence of QR-Decomposition). Assume that the matrix A:

nxm has rank k=min(n,m}. Then there exists a (nonsingular) column

permutation matrix P: mxm, a unitary matrix Q: nxn, and a matrix R: nnia

containing an upper triangular submatrix R,: kxk with positive diagonal

elements, such that

SA P = R ( 2 - 3 )

The structure of the R matrix is

[RI] (2-4a)

[~±] (2-4b)

or

o[R 1  : ] (2-4c)

according as A is determinate (k=n=m), overdetermined (k=m<n), or under-

determined (k=n<m), respectively. 0

2-5
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The word "unitary" refers, in the complex case, to a matrix allowing

complex entries whose columns are orthogonal relative to the complex

inner product; the corresponding property in the rea.1 case refers to a

matrix restricted to real entries whose columns are orthogonal relative

to the real inner product ("orthogonal").

Theorem 2-1 has an obvious extension to the rank-deficient case

that k < min{n,m}. The extended result is used only in the proof of

Proposition 2-8 in the Appendix (Section 2.5). The decomposition of Eq.

(2-3) is a full-rank factorization (cf. Eq. (2-2)) except in the over-

determined case (cf. Eq. (2-4b)). In that case, Eq. (2-3) is equivalent

to the full-rank factorization

AP = Q1R1

where Qi is the partition of Q compatible with R1 .

For the intended application, stronger properties of the

nonsingular submatrix R, are required than are evident in the

Gram-Schmidt interpretation as reflected in Theorem 2-1. A powerful tool

for accomplishing this is the following triangularization lemma of

Householder [Ref. 2-12].

Lemma 2-2. Assume that n-vectors a*O and v are specified. Then there

exists a unit vector w: nxl such that

H(a) (In - 2 ww )a = la~v C] (2-5)

In Eq. (2-5), In is the nxn identity matrix, the asterisk (*) denotes

the complex conjugate transpose operation, and the double bars denote the

vector norm generated by the inner product:
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la2 A*
ag = (aa) = aa

Successive application of Householder transformations, each having theI ~form defined in Eq. (2-5), to columns of the A matrix, including

appropriate rearrangement (pivoting) of the columns at each step, leads

to the desired triangularization. Reliable and widely available software

for computing a QR-decomposition uses the Householder lemma [Ref. 2-1 3J.

The stronger property that results is the following.

Theorem 2-3. In Theorem 2-1, elements of the matrix R1  [rij] may

be taken to have the dagonal dominance property:

2 j 2
r,, Ji:Y ri , j=zo..,k ; £I,.o°,k (2-6)

In particular, this implies the (weaker) property that the diagonal

elements form a nonincreasing sequence:

r,, > r.+i,+, > 0 , £=1,°..,k-I 0 (2-7)

The subtle distinction between the two theorems above should

be carefully noted. The results of Theorem 2-1 d.scribe every

QR-decomposition; the sharper results of Theorem 2-3 describe only those

QR-decompositions generated by the use of Householder transformations.

2.2.1.2 Solutions to Least-Squares Problems

Least-squares problems for finite-dimensional linear systems of

the form

VI 2-7



Ax = b (2-8)

with A: nxm become significant in the overdetermined case (n>m) in which

there are too many equations for a solution to exist (in general).4nstead, one attempts to minimize a positive-definite quadratic function

of the difference, such as

J(x; A, b) (b-Ax)*(b-Ax) (2-9)

or, more generally (apparently),

J w(x; A, b) =(b-Ax) *W(b-Ax) (2-10)

where W: nxn is Hermitian (i.e., W*=W) and positive definite. Being

positive definite however, W can be written in the factored form

W = L*L

with L: nxn nonsingular [Ref. 2-10, pp. 139-140]. This enables Eq.

(2-10) to be written as

J,(x; A, b) ;( ) - Rx)*(b A) = J(x; A, b) (2-11)

where b %S Lb, A G LA, so that the leant-squares problems associated with

Eq. (2-10) and Eq. (2-9), respectively, are in fact equivalent under a

simple scaling. It is therefore sufficient to discuss the relevant parts

of the least-squares theory using F/4 (2-9), even though the selection

algorit•!m is formulated ising Eqý (2-10). only the unconstrained

minimization of Eq. (2-9) is discuzsed. Full details, including

treatment of consitrained minimization, can be found in Reference 2-11.

The minima of Eq. (2-9) are precisely the set of solutions to the

normal equations



A (b-Ax) = 0 (2-12)

It is worth noting that this result is a consequence of the geometric

structure of inner-product spaces (Ref. 2-7] and does not follow from the

methods of calculus (the operation x + x of. complex conjugation being

nowhere differentiable). in addition, Eq. (2-1 2) provides a useful

geometric insight: at any least-squares minimum, the residual vector

= b - Ax

associated with the linear system Eq. (2-8) is orthogonal to the range

space (i.e., the subspace spanned by the columns) of A, denoted by

col(A).

The solutions of the normal equations form an affine space of

dimension m-k, where m and k are defined by Eq. (2-1). Written

explicitly, they are:

t 1*x = A tb + (I - A A)w , w: nxl arbitrary (2-13)

where the superscript (t) represents the Moore-Penrose inverse [Refs.

2-14, 2-15]). The basic properties of this generalized inverse will be

used without elaboration, as they are thoroughly documented (Ref. 2-16)

and have been discussed previously in a related context (Refs.

2-17, 2-18]. It follows from these properties that the two terms in Eq.

(2-13) are orthogonal and, therefore, that the particular least-squares

solution

0 A A
x Ab

has (uniquely) the smallest norm of all the solutions Eq. (2-13).
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Each least-squares solution gives the minimum value

A t 2 (2-14)
Jmn= 1(1 n AA )bl2-4

for the functional Eq. (2-9). Geometrically, this represents the length

(squared) of the projection of b onto col(A) , the ort!hogonal complement

of the range space of A. in particular, it follows that the minimum

valuq is zero if and only if

b e col(A) (2-15)

i.e., that Eq. (2-8) has an exact solution.

'he representation of least-squares solutions can be sharpened

substantially if the Moore-Penrose inverse is displayed using the QR-

decomposition of A. Two cases are distinguished:

(M) k = n < m, for which Eq. (2-15) is true; and

(II) k - m < n, for which Eq. (2-15)'is false.

Theorem 2-4 (Case 1). Assume that A has the decomposition of Eq. (2-3)

with k = n < m. Then the minima of Eq. (2-9) are given by:

(P'Ix) = RtQ*b + (I - RtR)w , w: nxl arbitrary (2-16)
m

If n=m, the set of Eq. (2-16) collapses to the unique solution

(P x) = R Qb(2-17)

In both instances, the minimum value in Eq. (2-14) is zero. 0

This result is used in the initial stages of the selection algorithm.
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tin even richer structure develops in the next case.

Theorem 2-5 (Case II). Assume that A has the decomposition of Eq. (2-3)

with k = m < n. Denote by Q 1Q: Q2] the partition of Q compatible

with the partitior of R in Eq. (2-4b). Then the minimum of Eq. (2-9) is

given (uniquely) by:

P-x1) = R.,IQ, b (2-18)

and the minimum value in Eq. (2-14) is

* 2
Jmin = IQ bI 2 (2-19)

The significance of Theorem 2-5 arises from the riqh structure of the

mappings associated with the matrices QI: nxk and Q2: nx(n-k), which

are briefly summarized next. They all follow from viewing Eq. (2-3) in

the equivalent form

Q (AP) = R (2-20)

which exhibits the final result of the Householder construction (cf.

Lemma 2-2). It follows iimimediately that Eq. (2-20) .;mbodies the two

equations:

*

Q1 (AP) R (2-21)

and
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Q2 (AP) = 0 (2-22)

From Eqs. (2-21) and (2-2,) it follows quite directly that QI and Q2

are orthogonal:

* *

Q1 Q2 = 0 , Q2 Q, = 0 (2-23a)

Q1 Q1 = ' k Q2 = In-k (2-23b)

and have range spaces

A.1
col(Q1 ) = col(AP), col(Q2) = col(AP) (2-24)

respectively. Furthermore the product mappings

andoQ QI - Q2Q2  (2-25)

1 1*
•- and

Q2 Q2  = I - Q1Q1  (2-26)

are orthogonal projections, respectively (cf. Eqs. (2-23), onto the range

spaces listed in Eq. (2-24). Note that Eq. (2-26) provides the link

between Eq. (2-14) and the result in Eq. (2-19). Theorem 2-5 forms the

principal basis for the selection algorithm.

The behavior of the minimum value in Eq. (2-14) as a function of

A, and in particular as columns are removed from A, is of ;onsiderable

interest for the active transducer selection problem. Roughly, one

expects that the minimum value does not change it columns of A are simply

rearranged, and that it does not decrease if a column of A is removed.
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Theorem 2-6. Let p be an integer, 1 < p < m, and denote by
Ail .•.ip an arbitrary p-column submatrix of A. Then

mi J(x; A, b) < J(y; ;,, b) (2-27)

xE yeEp .1 p

!I• w1-re Ea denotes the appropriate a-dimensional p i:,.'r 1 ,jdoct space.,f

The proof of this result is deferred to the Appendix (Section 2.5).

2.2.2 Algorithm Formulation

It is now possible to give a precise formulation of the active

transducer selection algorithm. It is assumed in what follows that:

(1) A reduced-order structural model has been chosen; an,1

(2) Sensors are to be colocated with actuators.

The focus is on determining an appropriate, and relatively small,

selection of actuators from a prespecified collection of candidates.

Dynamic equations in modal coordinates for the reduced-order model

to be considered have the general form:

2 T

"" + 2ZsTh + Q n = (0 BA)UA + (YTB)u (2-28)

0y = (TcpT) + (D 'TVT (2-29)

z (T D T)T n (2-30)
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where i- (T1,ee*,fn)T is the vector of modal coordinates retained

in the reduced-order model; S - diag(wi): nxn is the matrix of

characteristic frequencies; 0: vxn is the truncation of the

principal-axis matrix of transformation defining the modal coordinates

(mode shapes of the reduced-order model), v being the number of physical

generalized coordinates; Z - diag(;j*1,e,4n): nxn is the matrix of

assumed modal damping ratios representing inherent structural damping;

UA = (u 1 ,e..,um)T is the vector of inputs to the actuators;

uD = (w1 ,...,wY)T is the vector of disturbance inputs;

y = -(YI,'.,yt)T is the vector of outputs from the sensors;

z = (z 1 ,,O.,zs)T is the vector of variables to be regulated; and

BA: Vxm, BD: Vxy, Cp: Lxv, CV: Lxv, D: txv are the influence

matrices associated with the actuators, disturbances, displacementI sensors, rate sensors, and regulated variables, respectively. The

superscript (T) denotes matrix transpose. Equations (2-28) through

(2-30) are written in a form that highlights the presence of generalized

node shapes (modal influence vectors) of the form OTx.

The selection problem is defined in terms of two sets of

parameters:

M(1) A collection 4 of actuator candidates, consisting of the

generalized node shapes Tb where b is the j-th column of
A'A

the matrix BA in Eq. (2-28); and

(2) A collection 9 of regulation target vectors, consisting of
T T.ne generalized node shapes 0 di, where d. is the i-th row

of the matrix D in Eq. (2-30).

It is assuaued that the designer has a relatively wide range of choices

for actuators (in particular, having redundancy) both by functional type

and location for inclusion in the candidate collection ,/. The idea

behind collection c is as follows: actuators are to be selected from

the collection al which have a relatively strong influence on each of the

vectors in collection . , thereby enhancing the prospects of achieving
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the desired regulation of the vector z in Eq. (2-30). in order to
clarify ideas and simplify the notation, the remaining discussion

identifies the regulated variable z with the two-vector

(eLOSX, eLOSY) that is of interest in the applications of Section 2.3

and which represents line-of-sight (LOS) error parameters for an optical

system. The collection .56 then consists of the two elements:

I LOSX A T LOSY A
b ~ d * b 0=2-1

LOSX LOSY (2-I)I
where dLT and dos are the rows of D corresponding to the regulatedILOSX LOSY
variables £LOSX and CLOSY in Eq. (2-30).

Using the parameters from collections .- and ,• , an ideal

selection problem, and a least-squares approximation to it, are defined.

Denote by

A [4] • [a1 ... af]. n x i (2-32)

the matrix formed from elements of the actuator candidate collection 4.
(The type of correspondence defined by Eq. (2-32) is used repeatedly in

• •what follows.) It is assumed that the collection 4 is rich enough to

span the space En of modal coordinates; i.e.,

sp(j-4) col(A) - En (2-33)

Then t1ere exist coefficient vectors x (x- ... x T , y)T

such that

bLOSX =Ax j1 aixj

and

2-15
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I bLOSY - Ay - j21 aJY

Ideal Selection Problem: Find a minimal subcollection 1/' of d and

real coefficient vectors x' (xj), y' (yj), j £ I(j'), such that

bLOSX = A'x' - j•I(j2') aJx'j

and

bLOSY = A'y' - jcI(j') aJy'j

where the index set V(,4_) is the subset of (I,...,j} that identifies

which elements of .4 ara retained in a', and A' = [4'].

As a morp feasible alternative to the ideal selection problem, the

following least-squares approximation is formulated..

Approximate Selection Problem: Find a subcollection %' of . and

corresponding coefficient vectors x' E (xj), y' - (yj), j e I(d')

such that

LOSX A LOSX T LOSX
(I) J (x'; A', bO) (b - A'x')TW(b - A'x') and (2-34)

Jw(y'; A', bO) =L (bLOsY - A'y')TW(bLOSY - A'y') (2-35)

are minimized, where A' =A [.d-]; and

(2) the subcollection d' is minimal with respect to acceptable

increases in the minimum values:
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Jn(A,, bLOSX) A min A' bLOSX)
SWbX JW(x A', (2-36)

Ai mn- LO

S( bLOSY) min j (y'; A', b LOs) (2-37)Jmi n(A ye ; 2-7

In the above, the matrix W: nxn is chosen to be real, symmetric, and

positive definite. However, in view of the equivalence, under

appropriate scaling, conveyed by Eq. (2-11), the discussion below omits

explicit reference to the weighting matrix W. Note that, although the

correspondence

4' + [4'] I A'

defined by Eq. (2-32) does not distinguish between distinct column

rearrangements, Proposition 2-7 (Section 2.5) shows that such

distinguishability is inessential for its intended usage. Thus, the

approximate selection problem is well-defined.

A brief overview of the algorithm for the solution of the

approximate selection problem is as follows. A sequence of eliminations

from the actuator candidate collection d is generated on the basis of

information from least-squares solutions corresponding to Eqs. (2-34) and

(2-35) at each step. These solutions are displayed using the appropriate

QR-decomposition. Note that each elimination also leads to a reduction

in dimension of the inner-product space in which the least-squares

minimization is done. No matter what elimination sequence develops,

Theorem 2-6 guarantees a sequence of least-squares approximations that is

steadily deteriorating in quality in the sense that the sequence of norms

for the residual vector at eac.h least-squares solution is nondecreasing.

When 4 has vee. reduced by elimination to a collection d' for which

further elimination (say to d") leads to the condition that either of

the minimum values Eq. (2-36) or (2-37) (corresponding to d" rather than

to d') exceeds a specified tolerance To, the elimination sequence is
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terminated, and .4' is taken to be a minimal subcollectior. Next,

details of the elimination sequence are outlined.

2.2.2.1 Criteria for Elimination

In view of Theorem 2-4, the search for a minimal subcollectica in

the sense of the approximate selection problem eventually requires

criteria for intelligently eliminating a column from a determinate or

overdetermined matrix. Two such criteria are discussed prior to

describing the elimination sequence. Consider a stage of the sequence at

which the matrix A [.(L)] of the remaining actuator candidates is

(say) overdeterm.ned with I < n columns. The QR-decomposition of A has

the form of Eq. (2-3) with R having the form of Eq. (2-4b). Denote by x

and y, respectively the unique solutions (cf. Eq. (2-18)) to the

least-squares problems associated with Eqs. (2-34) and (2-35). The

criteria for elimination of actuator candidates from A are defined in

terms of the matrices R, x, and y; in particular:

(W) the relative magnitude of the smallest diagonal element ry

of RI ; and

(II) the relative magnitude of the products ri i=i,...,Z,

and rjjyj, j=1 ,...,* , respectively.

The rationale for each criterion is briefly discussed.

Criterion I. The scalar equations for the QR-decomposition of A have the

triangular structure:

j rl1 2~ q~jj 9I £(-8

aj = q 1  + qr2  + ... + qo*,+ q 1 ... L (2-38)

where the diagonal elements rjj of R1 form a nonincreasing sequence

(cf. Eq. (2-7)). Denote by SI- the (£-1)-dimensional subspace spanned

by the vectors [q1,..., q -}. Since the vector a -q r is in S.

r £ is an upper bound for the Euclidean distance between a and S£ZI1

2-16



d(aZ, S£_i) = inf{ta t -so: s £ s_} (2-39)

Because of the triangular structure of Eqs. (2-38), S£_I is also the

linear span of {at,..., ak-I}. Therefore, Eq. (2-39) is a measure of

the near-dependence of at upon the preceding column vectors ai,

i=1,...,Z-I. Sufficiently small values of rgy relative to r£_iXI

suggest that at might be eliminated without an unacceptable increase in

the resulting minimum value Eq. (2-36) and (2-37) associated with the

truncated matrix.

Criterion II. Eliminations in accordance with Criterion I are made only

on the basis of the QR-decomposition of A, and without regard for the

least-squares solutions that determine the quality of the desired

approximation. Criterion II takes those solutions into account. In

comparing the numbers I riixil, i=1,...,£, suppose that the minimum

occurs at some index a < A; i.e.,

r rx in mmr..x. (2-40)

Recalling the nonincreasing property Eq. (2-7) of the diagonal elements

rii, it follows from Eq. (2-40) that

• *m I min {fIxi} (2-41)

Equation (2-41) is an indication that column aa is less important to

the least-squares approximation than the succeeding columns aJ,

j=cr+I,...,L. Sufficiently small values of the minimum in Eq. (2-40)

relative to the other IriixiI values suggest that aO might be

* eliminated from A. Similar considerations relating to the numbers

2
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IrjjyjI, j=1,....,, suggest the elimination of a (possibly different)

column aY from A. Taken together, Criteria I and II may suggest up to

three distinct candidates for elimination from A.

2.2.2.2 The Elimination Sequence

Having specified the following parameters:

(1) an actuator candidate collection d;

(2) a regulation target collection SO (e.g., [bLOSX, bLOSY});

(3) a least-squares weighting matrix W ',notational references

suppressed); and

(4) a least-squares minimum tolerance parameter To > 0;

the elimination sequence can be defined.

Step 1: Initial Factorization. Set A(0) = A [j1] and compute a QR-

decomposition of AM. (Because of the assumption Eq. (2-33), the

R-matrix in the decomposition (cf. Eq. (2-3))

(0) (1) (1) (1)
A P =Q R (2-42)

has the structure of Eq. (2-4c).]

(1) A (0) (1)
Step 2: Initial Least-Squares Solutions. Denote A = PA P and

solve the least-squares problems of the form Eqs. (2-34) and (2-35),

respectively, for A(M). [It follows from Theorem 2-4 that there are

infinitely many least-squares solutions (cf. Eq. (2-16)), but all give

zero for the minimum values Eqs. (2-36) and (2-37) corresponding to

A( 1 ).]

Step 3: Initial Elimination. Truncate A(I) by retaining only its

first n columns; denote the result by A(2M; i.e.,

A(2) [a 1(). ~ n
A = • * aP(n): n x n
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where P, is the permutation mapping of the indices {1,...,•} induced by

the column permutation matrix p(1) of Step 2. (Because of the

assumption Eq. (2-33) and %he structure of the matrix R(I), the first n

columns of A(M) are linearly independent. Moreover, AM2 ) inherits

the QR-decomposition

A(2) Q(1) (IA R

from Eq. (2-42) in which the R-matrix has the form of Eq. (2-4a). There

are unique solutions x( 2 ) and y( 2 ) to the least-squares problems of

the form Eqs. (2-34) and (2-35), respectively, for A( 2 ) (cf. Eq.

(2-17)), and the corresponding minimum values Eqs. (2-36) and (2-37) are

again zero.]

Step 4: Secondary Elimination. Examine the numbers r nn; r( 1x2)

i=1,*..,n; and rjj1) yj(2y , j=1,...,n, associated with A(2), x (2), and y(2)

Using either Criterion I or II, select a column, say the c-th, of A(2 )

for elimination. Truncate AM2 ) by removing the a-Qh column. (When the

criteria suggest more zhan one column of A(2 ) for elimination , all

eliminations may be done in parallel. The result is a (generally

expanding) lattice of alternatives for elimination.]

Step 5: Secondary Factorization. Denote

A( A [apl(1) aP•(a)-I apl(()+1 n ]n

and compute a QR-decomposition of AM. [The columns of AM3 ) are

linearly independent, having been inherited from A(2 ). The QR-

decomposition

2-23



A(3) p(2) _ (2) R(2)

has an R-matrix with the structure of Eq. (ý-jb).]

(4) A (3) (2)
Step 6: Secondary Least-Squares Solutions. Denote A • A P and

solve the least-squares problems of the form Eqs. (2-34) arnd (2-35),

respectively, for A(4 ). (It follows from Theorem 2-5 that each of the

two least-squares problems has a unique solution (cf. Eq. (2-18)), and

the minimum values corresponding to Eqs. (2-36) and (2-37), respectively,

a're generally-,nonzero (cf. Eq. (2-19)).]

Step 7: Subsequent Eliminations. Repeat Steps 4 through 6,

successively, applying Step 4 of the current cycle to the results of Step

6 for the preceding cycle.

Step 8: Termination. Assume that the preceding eliminations have

reduced the initial collection j. to the subcollection ,'el and that each

elimination (say to .4") from di' via the application of Steps 4 through

6 leads to corresponding minimum values (cf. Eqs. (2-36), (2-37)) such

that either

LOSY

J mi n (A", bLO ) > T 0 (2-43)

:)r

Smn'A", b LOSY ) > TO0 (2-44)

where A" • [a"]. Terminate the elimination sequence;,d' is a minimal

selection.

The actual numerical implementation of the termination tests Eqs.

(2-4-3) and (2-44) is modified slightly when very small residual vectors

in the least-squares solutions are required, as in the applications _o be

preeented subsequently. The test Eq. (2-43) has tic- form

F,• 2-22
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l" in1 ,i2 > T (2-45)

where p = p On )T is the residual vector bLOSX-A"x" at a

Ieast-squares solution x" corresponding to A". The actual computation of

the squares of small numbers in Eq. (2-45) in undesir-,ble. In view of

the equivalence of all norms on En, and in particular, from Jensen's -

inequality (Ref. 2-19]:

M A max' ginj ip2 I/ 2  n
, x In < - I 1) n < n M

the test Eq. (2-45) is equivalent to the condition

Ip mx,- ii > T, (2-46)

for appropriately chosen T1. Similar remarks apply to the test Eq.

(2-44). In addition to being simpler and subject to less computational

error, Eq. (2-46) also provides information (not provided by Eq. (2-45))

as to which of the modal coordinates is associated with the unacceptable

approximation.

It should be observed that the elimination sequence has embedded

within it a considerable degree of design flexibility that goes far

beyond the choice of the parameters .4, ,', W, and To- Step 3

accomplishes a (generally quite large) reduction in the number of

actuator candidates from U (cf. Eq. (2-32)) to n. The candidates that

are retained in Step 3 are determined by the column permutation p(M)

generated in Step 1. That permutation in turn is the result of

successive applications of the Householder Lemma 2-2 that are performed

in Step 1 in order to achieve the diagonal dominance property Eq. (2-6)

in the factorization of Eq. (2-42). In general, P(1) is not unique in

this regard. The implications of this lack of uniqueness have yet to be

fully explored.

2-23



2.3 Applications with ACOSS Model No. 2

In the description of the scientific experiment for active control

synthesis with generic structural models [Ref. 2-4], four principal

elements of the syn.:hesis process are identified as variables of the

experiment:

(1) Design of the basic structure to be controlled;

(2) Selection of reduced-order models;

(3) Selection of active transducers; and

(4) Determination of the controller feedback structure.

For the work summarized in the present report.. the first and last of

these elements are fixed in order to focus on the other two, especially

active transducer selection.

The first element, basic structural design, is a significant

variable in relation to the generic structural models because of the many

modifications to original designs. In particular, the original

structural design for ACOSS Model No. 2 [Ref. 2-20] has undergone three

major revisions (Ref. 2-21]. The choice of Revision I fo: the work

reported here represents a compromise which retains improvements on the

original design in the modeling of the attachments for certain rigid-

body elements, while avoiding the extremes of very high inherent

flexibility (Revision 3) or very high inherent stiffness (Revision 4).

The last element, controller feedback structure determination, is

held fixed for the work reported here in order to avoid obscuring tht

view of whatever improvements in performance may be attributable to

judicious selections of reduced-order models and of active transduceis.

The choice of the disturbance-rejection control feedback structure [Re.".

2-22; Sec. 3.6], which assumes full knowledge of the statistics of the

disturbance, provides an upper bound for control system performance.

The disturbance to be accommodated is assumed to be an aperiodic

disturbance with a constant power spectral density at frequencies from 0
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to 5 Hz, applied in a fixed direction at nodes no. 37 ard 46 of the

structural model. Full details of the disturbance definition and

relevant assumptions have been given previously [Ref. 2-5, Sec. 2].

To assist in the selection of reduced-order models, criteria for

ranking the structural modes are commonly used (e.g., Ref. 2-2]. In the

present context, ranking of modes is done by comparing open-loop modal

responses of the regulated variable to the disturbance input; i.e., the

root-mean-square 4d4RS) value of the response of the two-input, single-

output system between the disturbance input and the contribution of each

mode to the line-of-sight error (cf. Eqs. (2-28) and (2-30)). The

precise formulation has been given previously [Ref. 2-5, Sec. 5]. The

resultant ranking of flexible-body modes for the chosen structural model

(Revision 1) is shown in Table 2-1. An inevitable feature of any such

ranking procedure is that, in general, a selected group G of

consecutively-ranked modes is not contiguous in frequency; i.e., there

.exist modes not in G which are interlaced in frequency with modes in G.

For example, the fir-st eleven modes according to the ranking of Table 2-1

are interlaced in frequency with seven modes (11, 15, 17-21) of

considerably lower rank. The interlacing can be seen clearly in the

frequency listing of Table 2-2. A reduced-order model having this

property is said to be interlaced; otherwise i't is called contiguous.

As indicated in the preceding section, the objective of the active

transducer selection algorithm (roughly speaking) is to choose a

relatively small number of those actuators that are expected to have

relatively high effectiveness in achieving the desired regulation of

line-of-sight error. It therefore seems desirable that the select-on

process lead to a rich lattice of alternatives (Step 4) for elimination

from the initial class of actuator candidates. This qualitative property

is termed richness. It is certainly desirable that upon termination of

the elimination sequence, the number of retained actuators is

substantially smaller than the number of modes to be controlled.

Denoting by p the number of actuators retained in a minimal selection,

the level of reduction
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A n - p (2-47)

is an important quantitative measure of the effectiveness of the

selection algorithm. It is obvious that the level of reduction should

depend on the tolerance parameter TO; it also turns out to be a very

strong function of the class 4 of actuator candidates chosen.

Principal observations with respect to the performance of the

selection algorit•i that have emerged from work to date are the

following:

(1) Level of reduction increases with augmented richness;

(2) Richness is augmented when:

(a) Interlaced reduced-order-design models for which active

transducer selection is tailored are made contiguous;

(b) The ciass of actuazor candidates is enlarged;

(c) Suitable restrictions are imposed upon a sufficiently

large actuator candidate class;

(3) Minimal selections which realize the same level of reduction

are not necessarily unique:

Four design examples with ACOSS Nodel No. 2 are described next.

These examples demonstrate the observations noted and show in addition

some of the design flexibility that is available when relatively high

levels of redaction are achievable.

2.3.1 Specifications for Design Examples

Considerations which apply to each of the four examples are the

following:

(1) The basic structural design is Revision I of ACOSS Model

No. 2 (Ref. 2-21] with Z = diag(O.001) in Eq. (2-28);

(2) A broadband disturbance (Ref. 2-5, Sec. 2] it applied to

nodes no. 37 and 46 of the structure, assuming constant

direction;
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(3) Selection of, modes for inclusion in reduced-order models for

controller design is assisted by the distyrbance response

ranking of Table 2-1;

(4) The regulation target collection 6 consists of the elements

defined by Eq. (2-31) (whose dimension is that of the design

model);

(5) The least-squares weighting matrix W has the form:

W = diag(wi): n x n (2-48)

where wi is the RMS LOS-error disturbance response

associated with mode ni of the reduced-order design

model as listed in Table 2-1;

(6) The least-squares minimum tolerance parameter is

To 0 I06 (2-49)

The four examples are distinguished by differing specifications on

the reduced-order des4 .gn model and actuator candidate class Ja. The

specifications are summarized in Table 2-3 and are discussed briefly

below.

Reduced-order design model. in Example A, the reduced-order design model

consists only of the modes ranked 1 through 11 in Table 2-1; it is

interlaced. in all the succeeding examples, this design model is made

contiguous Ly incorporating the formerly excluded modes between mode 7

and mode 24. However, mode 19 -- a solar panel torsion mode -- is

excluded from the numerical implementation. The associated entry in the

least-squares weighting matrix W (cf. Eq. (2-48)) is extremely small

(10-22) causing the resulting weighting matrix to be poorly conditioned

numerically with respect to inversion. The small weighting is a
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reflection of the very low influence of this mode (ranking at most 147

out of 156) on any of the modeled node-connecting elements.

Actuator candidate class j-i. In Examples A and B, only axial member

actuators (137 total) on node-connecting elements of the finite-element

model are allowed. In Example C, the class of candidates is expanded to

include translation actuators at all nodes, an-aggregate of 311. In

Example D, certain nodal translation actuators are disallowed; in

particular, these are the z-translation actuators on equipment section

nodes (6 total) and both y-translation and z-translation actuators on

interior solar panel nodes (16 total).

2.3.2 Selection Results

Active transducer selection results with Examples A through D are

summarized in Table 2-3; visual representations are given in Figures 2-7

through 2-9. The results are discussed briefly.

Example A yields somewhat unsatisfactory results from the

viewpoint of design flexibility in actuator selection (&=l). Only two

alternatives are available (Step 4) for removing an actuator from the

candidates remaining after completion of the initial elimination (Step

3). Both alternatives lead to least-squares solutions which exceed the

specified termination tolerance (Eq. (2-49)). The least undesirable of

the two elimination alternatives leads to the minimal selection shown in

Fig. 2-1. It can be seen that the measure of the residual vector in Eq.

(2-46) slightly exceeds the specified tolerance To in the regulated

varible associated with bLOSx (cf. Eq. (2-31)). Inclusion of the

member connecting one solar panel (at node 52) to the equipment section

(at node 43) is somewhat surprising, since in a static comparison of

influence upon each of the modes in the design model (intra-row

comparison of entries in the (TBA matrix of Eq. (2-28)), this member

ranks no higher than 91st of all 137 members.
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Example B yields a somewhat richer lattice of elim.nation

alternatives and a substantial improvement of the level of reduction in

the minimal selection. This is attributable entirely to having

(minimally) augmented the reduced-order design model to make it

contiguous, as Table 2-3 indicates. The minimal selection is shown in

Fig. 2-2.

Example C yield- only a slightly richer lattice of elimination

alternatives, but a quite substantial improvement in the level of

reduction in the minimal selection, in comparison to example B. This is

attributable to having enlarged the class of actuator candidates '4 to

include translation actuators at nodes, as Table 2-3 indicates. This

explains the presence of .4 in Eq. (2-47). The minimal selection is

shown in Figure 2-3. It is noteworthy, but not surprising, that no axial

actuators appear in the minimal selection even though the candidate class

includes them all. In fact, all axial candidates are removed in the

initial elimination (Step 3).

Example D provides somewhat surprising and quite satisfying

results. The lattice of elimination alternatives is extremely rich and

leads to an even more substantial improvement in the level of reduction

in minimal selections, of which there are two in this case. A portion of

the branch of the elimination lattice that leads to the minimal

selections is shown in Fig. 2-4. The label "TX-34" indicates the removal

of the translational (T) actuation in the x-coordinate (X) body-axis

direction at node 34, other labels having an analogous interpretation.

Parentheses indicate eliminations along a portion of the branch that do

not lead to one of the minimal selections. Preselections D-17, D-14, and

D-11 are shown in Figs. 2-5 through 2-7, respectively, and minimal

selections D-9A and D-9B are shown in Figs. 2-8 and 2-9, respectively.

Taken together, Figs. 2-4 through 2-9 show quite clearly how the

elimination sequence (beginning with Step 4) leads systematically to

minimal selections. The steady increase in the measure of Eq. (2-46) for

the residual vectors associated with bLOSX and bLOSY (Eq. (2-31)),
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respectively, as the elimination sequence proceeds may be noted,

consistent with the expectation of Theorem 2-6 (Eq. (2-27)). In this

example, the number of actuators in a minimal selection is only half the

number of controlled modes. This implies a very desirable degree of

design flexibility is available (and may be beneficial) by employing

intermediate (ancestral) selections such as D-14 or D-11 that lie along

the path to a minimal selection. A full explanation of how the

restriction imposed in proceeding to example D leads to the improvements

observed is not yet available. However it does provide a substantiation

of the design flexibility embedded within the elimination sequence that

is mentioned at the end of Section 2.2.

Minimal selections from Examples B, C, and L are employed in the

design of! optimal linear-quadratic disturbance-rejection controllers as

reported subsequently in Section 3. Each of the designs is evaluated in

the presence of a family of contiguous reduced-order evaluation models

(cf. Table 2-2) with increasing ranges of frequency.. Stability well

beyond the frequency range (5 Hz) of the design model is demonstrated in

each case.

2.4 Summary

Work accomplished to date in connection with the scientific

experiment for active control synthesis with broadband disturbances has

led to substantial insight into a relatively new and systematic approach

to active transducer selection. This process leads to selections which

at the same time have relatively high influence upon variables to be

regulated in the control problem and require substantiall, fewer

actuators than controlled modes. The selection process itself, as well

as the selections it produces, exhibit potentially beneficial design

flexibility. Linear-quadratic disturbance-rejection controllers

employing transducer selections generated by this process (cf. Sec. 3)

demonstrate stability in the presence of residual modes over a frequency

range substantially beyond that of the design modes. These
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demonstrations are significant in that stability-enhancing adjustments of

the controller feedback structure have been deliberately postponed in

order to focus on the connections between the selection of reduced-order

models and active transducers on the one hand and closed-loop stability

and performance on the other hand.

Subsequent work in regard to active transducer selection will

include:

(1) Expansion of the actuator candidate class to include

rotational actuators;

(2) Deeper investigation of the design flexibility inherent in

the selection process; and

(3) Examination of the interaction between the selection of

reduced-order models and the selection of active transducers.

2.5 Appendix

Theorem 2-6 is an immediate consequence of the following two

results.

Proposition 2-7 (Column Rearrangements). The minimum value defined by

Eq. (2-14) is unchanged by an arbitrary column permutation P: mxm of A;

i.e.,

min -1 minSJ(P x ; AP, b) r J(x; A, b) (2-50)Sx = x

Proof. The identity

J(P- x; AP, b) = Ib-(AP)(P 1x)I2 = J(x; A, b) (2-51)
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holds for all n-vectors x. It follows that for each minimum, say x0

(cf. Eq. (2-13)), of J(.; A, b), P-lx 0 is a minimum of J(.; AP, b),

and conversely. The desired coincidence of minimum valucs Eq. (2-50)

follows from Eq. (2-51) by this correspondence of minimum points. 0

Proposition 2-8 (Terminal Removals). Let p be an integer, 1 < p < m-l.

The minimum value defined by Eq. (2-14) does rot decrease if columns

p+1,...,m are removed from A; i.e.,

A rain J(x; A, b) < pin J(y; A b) jp.min xcE yYE 1...p min

where A1 ,..p denotes the submatrix consisting of the first p columns

of A.

Proof. Integers k, m, and n are defined as in Eq. (2-1). In view of

Proposition 2-7, there is no loss of generality in assuming that the

leading k columns are linearly independent. Two cases are considered,

depending on whether Eq. (2-1) represents an equality or a strict

inequality.

Case A: k = min(n,m}. If n < m, then the result is trivial: Eq. (2-15)

is true, and therefore

J = 0 < JP.
min i _n

Thus, consider that m < n. The QR-decomposition of A (cf. Theorem 2-1)

has the structure

A = R [Q1  Q2- [ (2-52)
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where in this case the column permutation P is taken to be the identity

matrix. The truncated matrix AI...p inherits a QR-decomposition from

Eq. (2-52) by a corresponding truncation of R:

[ 0R1
A l .. -------•[ 1 21 € :) . .

where the matrix Q is the same as in Eq, (2-52) but is repartitioned to

be compatible with (R1)i...p: pxp. Denoting by qJ the j-th column

of Q, it can be seen that

Q2 -- [= (q : ' ".. :qk Q2 "

Using Eq. (2-19) with both Q2 and Q2# it follows that:

Smin Q jp+1 J(q)*b + 'Q2 b -> mi

Case B: k < min (n,m). The proof for this case uses the same approach

as in Case A, except that Eq. (2-52) is replaced by the decomposition for

the rank-deficient case that is a simple extension of Theorem 2-1:

A = -Q 2 ] 0

The details are omitted. 0
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Table 2-2. Reduced-order models in terms of open-loop
undamped characteristic frequencies:

0 Interlaced design

* Contiguous design

m Contiguous evaluation

MtODE EZGENVALUE R E k L E I G E N V A L U E 3
NO. 21 Wi wi

(rod/s) (Hz)

1 0.0 0.0 0.0
2 0.0 0.0
3 0.0 0.0 0.0
4 0.0 0.0 0.0
5 0.0 0.0 0.0
6 0.0 0.0 0.0
7 O M U 8.650M7PE-01 9.300899E-01 1.480284E-01 0Hz

a 0 0 U 3.148905E00 1.774515E400 2.824228E-01
9 0 0 U 4.009007E+00 2.002251.E00 3.186681E-01

10 0 0 U 4.434997E+00 2.105943E*00 3.351712E-01
11 0 U 8.638482E+00 2.939130E+00 4.677770E-01
12 0 0 U 1.3'4033E*01 3.666106E+00 5.834789E-01
13 0 0 3 1.424241E#01 3.773911E+00 6.006367E-01
14 0 0 M 1.790326E*01 4.2312224E*00 6.734203E-01
1i 0 M 3.639226E+01 6.032599E+OC 9.601181E-01
16 0 * a 4.708934E.01 6.862167E+00 1.092148E*00
17 0 U 1.334769E+02 1.155322E+01 1.838752E+00
18 * U 1.341718E+02 1.158326E+01 1.843533E+00
19 0 M 1.408955E+02 1.186994E+01 1.889159E+00
20 0 U 1.5640S7E402 1.230623E401 1.990428E400
21 M U 1.675513E*02 1.294416E+01 2.060127E*00
22 0 * U 2.372882E*02 1.540416E*01 2.451648E+00
23 0 0 M 2.412209E402 1.553129E+01 2.471881E400
24 0 M 4 6.149673E402 2.037074E+01 3.242105E.00 5 Hz
25 E 1.051814E403 3.243167E401 5.161660E+00
26 U 1.055'04E*03 3.248690E#01 5.170464E+00
27 * 2.449482E*03 4.949223E*01 7.876933E*00
28 U 2.474952EE03 4.974889E+01 7.917781E+00
29 U 3.037863E+03 5.511682E*01 8.772115E+00
30 U 3.040462E*03 5.514038E*01 8.775864E400
31 8 3.083413E403 5.552849Eg01 8.837633E+00
32 U 3.183590E#03 5.642339E+01 8.900061E+00
33 U 3.653264E+03 6.044223E+01 9.619679•+00 10Hz
34 S 4.265980E+03 6.531447E+01 1.039512E.01
35 U 5.379633E*03 7.334598E.01 1.167338E401.
36 a 5.939781E#03 7.706998E#01 1.226607E+01
37 U 7.075340E#03 8.411S0E+01 1.338732E+01
38 U 7.319027E+03 8.555132E+01 1.361592E+01
39 U 8.614004E*03 9.281166E+01 1.477143E+0i 15 Hz
40 1.065900E*04 1.032424E+02 1.643153E*01

41 1.713255E+04 1.308914E*02 2.063200E+01
1.874883E*04 1.369264E+02 2.179250E+01

43 1.$83882E+04 1.372546E+02 2.18474E+01
44• 2.88647E404 1.37282E+02 2.184917E+01
45 1,884669E*04 1,372832EE02 2.184930E+01
46 1,889893E*04 1,374734E*02 2.187956E401
47 2.227858E#04 1,492601E402 2.375548E+01
4a 2.364327E404 1.537637E+02 9.44722E4E01

S45 2,495703E+04 1.567068E*02 2.494066E401
SOI 2,643350E*04 1,62583SE402 2.587601E+01

2 -

____ __2-_____7



0 r.
0

> Ci

0 2

02 0

u 4)4 -

-H
4.4 HcJ
H
Q

IJI
P. co C -C

rz4) 03 Wi 14

0 00
P2 Z__ _ _ _ -r

10 cc

0 C.) 4-4:L4 L
r- X.0 Co CoX U

02 uJ -4~ E-4 Co$-'-

0 0

0a 0

1o 0H0 10 o0

u Ci Co

Ci co AiU r.U IC: P aCe
d) v- 00 C4 0 02 -

C14

CU4

i Hl

x2-3



37 137

35 28

14n1

9-191<~1 1 __



34 n - 18
37• - 137

- -•

30ZX 38-

'31 
,32

15

6 
40

•~ a2

X y ~ ~~~~46 .,.,0 ,,,% ' -"" .'

p~oo

".1 "0 3 45•t ""' 42

,, ' ooo 55 .- LOSYý: 3E-6

,, 5P .0 L.O;,Y: I3E-6

Figure 2-2. Minimal selection, example B.
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Figure 2-4. Branch of elimination lattice, example D.
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SECTION 3

PROGRESS ON SYNTHESIS OF ACTIVE CONTROL FOR BROADBAND

DISTURBANCE ACCOMMODATION

PART 2: CONTROL SYSTEM DESIGN AND EVALUATION

3.1 Introduction

The philosophy of our scientific experiment for active control

design with ACOSS Model No. 2 was reviewed in the previous section. Now

we make use of the 18 mode (modes 7-24) design model from Revision 1 of

Model No. 2, and let the several actuator and sensor placements be

variables in the experiment.

This section will review the control system design philosophy

which remains fixed while working with the various actuator and sensor

selections. After the design results are examined, some changes in the

controller design will be suggested for the future part of the

experime nt.

3.2 Control System Design Philosophy

For these designs we have employed the Linear-Quadratic-Gaussian

(LQG) methodology, where a model of the disturbance has been augmented

with the state equations of the structure. Such a disturbance model uses

knowledge of the point of application on the structure and power spectral

density of the incoming disturbances. The resulting controller is

frequently referred to as a disturbance rejection controller, and has

been treated in References 3-1 (Section 4) and 3-2.
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To clarify some of the values used here and in the designs of

Reference 3-1, we examine the transfer function model for the power

spectral density function corresponding to the incoming disturbances as

given by Eq. (2-1) of Reference 3-1 (Section 2):

Gw2
cS (s) =xx 2 2

(a) - s
c

where

G = 40 N2 sec

W = 2irfc c

f = 5 Hz
c

The corresponding state space representation is (cf. Eq. (2-28))

v = BIDUD

where uD is the solution of

D= ADuD+BW

In particular, v is the disturbance acting on the structure, and BD,

the influence matrix of the disturbances, has been discussed in Section 2

of Reference 3-1. Here

0

A D

where X, X2 = -wc -31.4159, and
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Fb 01Si o1
.0 b 2

where b = bw2 = wc = 198.692. The above terms are discussed

in Section 4 of Reference 3-1, but without noting the numerical values.

isAlso the covariance matrix of the fictitious white noise input vector W
is

Cov(w WT) 12x2

Note that the power spectral density function has a bandwidth of 5

Hz and has a zero frequency value of 40 N2 /Hz if it is considered to be

a two-sided function of frequency, and has a zero frequency value of 80

N2 /Hz if it is considered to be a one-sided function of frequency.

Among the controller designs presented in this section for the

four actuator/sensor placements, the only parameters that have been

altered are the diagonal terms of the 3x3 Q matrix in the performance

index for the LQ regulator where,

0 q30

and q, weights the line-of-sight displacements in the x direction

(LOSX), q2 weights the line-of-sight displacements in the y direction

(LOSY), and q 3 weights the defocus displacements (Z). In particular,

the diagonal terms of the Q matrix are adjusted to ensure that the state

feedback portion of each LQG design will meet the line-of-sight (LOS)

specifications. These LOS specifications are taken to be:
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m
LOSX = [ (� Ui - Yl )]1/2 < 0.05 u-radians

LOSX jirii--n

m
LOSY = [ (ULi - Y2)]/ 2 < 0.05 U-radians

i=l

m ]112 103
Defocus = Z = [ ) (Ui - Y3)]' < 0.025 x 10 meters

where Ui-Yj represents the mean square %7alue at one of the three line-

of-sight outputs resulting from the i-th disturbance. For our designs

there are two identical disturbances, one at node 37 and one at node 46

of the model, so m is two in the above LOS specifications.

For all designs the control weighting matrix, R, in the LQ

performance index was an identity matrix of appropriate dimension and its

scalar factor, PR, was always 1x, 0-17.

The design of the optimal state estimator is dual to that of the

LQ regulator and the covariance of the sensor noise term, 8, was taken to

be:

Cov(e 8T) = Po1mXm

-17
where po = 1x10 , and m is the number of sensor outputs, as in the

designs of Section 4 of Reference 3-1.

The state estimator is connected to the constant LQ gain to form a

compensator which, when evaluated with the 18 mode design model of the

structure, is guaranteed to yield a stable closed-loop system. Note that

Model No. 2 has 132 elastic modes of higher frequency than the 18 modes
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used in our design. One goal should be to have a control system robust

enough to remain stable in the presence of these 132 high frequency

modes, realizing that degradation in LOS performance would occur. Our

designs have not achieved that goal at this point in the experiment, but

the results, discussed in the next section, are encouraging.

3.3 Controller Results

The results of the control system designs with four of the

actuator/sensor selections described in Section 2 are summarized in Table

3-1. The diagonal elements of the Q matrices used in the LQ designs, and

the resulting line-of-sight results for the full-state feedback case

under the column headed by LQ are shown. Note that the LQ designs with

translational actuators/sensors required much lower weighting of the

controlled variables (line-of-sight displacements) in the performance

index than did the design with axial members, while achieving

approximately the same LOS. performance.

Not reflected in the table are the design iterations on the Q

matrix for each particular actuator/sensor selection that led to

acceptable LOS performance. These iterations showed that each Z result

was relatively insensitive to changes in its own weighting or the

weighting of the other terms. However, an order of magnitude change in

the weighting for LOSX or LOSY, namely q, or q 2 , from those shown in

the table yielded approximately an order of magnitude change in the LOSX

or LOSY value.

Recalling that actuator/sensor selection D-9A was a subset of

selection D-14, one can note only a slight degradation in the LOS

responses between these two for the LQ design.

The original 18 mode LQ design for selection D-9A encountered

numerical difficulties when evaluating the poles of its state-feedback

design. These numerical difficulties were alleviated when mode 19, which

has extremely low control and output influences, was deleted from the

design process. Mode 19 was of course included in the evaluation models.
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Going to the final column of Table 3-1, one can see that

actuator/sensor selection C yielded the largest number of modes in a

stable evaluation. The addition of one mode beyond any of the stable

evaluations shown in the last column gave an unstable system. Note that

selection D-9A, which was a subset of selection D-14, had a much lower

stable evaluation model than D-14. In general, taking into account the

number of actuators/sensors in each selection, the translational members

yielded control systems with superior stability properties compared to

the design using axial members.

For the two designs giving the greatest envelope of stability, the

LOS results were computed for the LQG compensator evaluated with the 18

mode design model and with a 30 mode evaluation model (modes 7-36).

While slight degradation occurred in the LSX and LOSY results for the

LQG compensator evaluated with 18 modes compared to the full-state

feedback results in the LQ column, significant degradation in LOS did

occur when the LQG compensator was evaluated with modes 7-36.

3.4 Future Coniroller Designs

As part of the scientific experiment explained in Section 2,

changes will be made in the control system design with an eye toward

improving the stability results. Specifically, the choice of state and

control weighting matrices in the LQ performance index could be altered

to lower the multivariable bandwidth. In addition, other frequency

shaping techniques may have to be used to ensure adequate high frequency

attenuation in the LQ design. Hopefully, in addition, a reasonable

disturbance rejection controller design can be found which relies less on

explicit knowledge of the disturbances' structural locations and

stochastic properties. If a linear quadratic regulator can be designed

with some of the improved properties mentioned above, the estimator may

have to be designed using "full-state recovery techniques" [Ref. 3-3] to

preserve those good features, which otherwise are not guaranteed to hold

when an estimator of general design is used in the compensator.
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Z.5 Conclusion

This section has illustrated the LQG disturbance reiection

controller results for four actuator and sensor selections used on ACOSS

Model No. 2. These selections were the variables under investigation in

the experiment referred ts in Section 2. The results indicated that

translational actuators and sensors gave superior line-of-sight and

stability results when compared to axial actuators and sensors. Changes

in the controller desiogn philosophy will be made to improve the stability

results in the future part of this experiment.
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SECTION 4

SAMPLED DATA CONTROL OF FLEXIBLE STRUCTURES

USING NON-COLOCATED VELOCITY FEEDBACK

4.1 Overview

A framework is developed for sampled data control of flexible

structures, in terms of discrete time recirsive equations in second order

form. This framework is used to analyze the sampled data control scheme

where the loop is closed using constant gain output velocity feedback.

It is well known that, the closed loop is stable if colocated velocity

feedback with symmetric and positive definite feedback gain is used, so

long as the sampling rate is sufficiently high. In this section it is
shown that the closed loop can be stabilized using sampled data output

velocity feedback for arbitrary sampling rate; our approach is to make

use of appropriately defined non-colocated velocity feedback. This

approach leads to explicit stability conditions in terms of the feedback

gain and the sampling rate.

S4.2 Models for Sampled Data Controlled Flexible Structures

A sampled data controlled flexible structure can be defined as a

distributed parameter system, where the structure input is the output of

an ideal zero order hold and the structure output is sampled. Although

distributed parameter models typically involve infinite dimensional

variables, our analysis is based on the finite dimensional model

Mq + Kq = Bu (4-1)
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For simplicity in the subsequent development no structural damping is

included. The structural displacement vector q = (qj,.**,qn) and the

force input vector u = (ul,*,.,um). The mass matrix M and the

structural stiffness matrix K are assumed symmetric and positive

definite. Throughout, we consider velocity output of the form

y =C4 (4-2)

where the velocity output vector y = (y,"**yYm). The input

influence matrix B and output influence matrix C are assumed to be

dimensionless.

The structure input u is defined in terms of the input sequence

uk by the ideal zero order hold relation

u(t) = Uk, kT < t < kT+T (4-3)

The output sequence Yk is defined in terms of the structure output y by

the ideal sampling relation

Yk = y(kT)

The fixed value T > 0 is the constant sampling time. This open loop

sampled data controlled structure can be viewed as a discrete time system

with input sequence uk and output sequence Yk, where k = 0,1, ...

Let 0 be a nxn nonsingular modal matrix and let S2 be a nxn

diagonal modal frequency matrix (Ref. 4-1] satisfying

T T 2 2 2
(DMW = I, K = d) = diag(w 0...6 Wn)

Introduce the coordinate change
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q = bn

so that Eqs. (4-1), (4-2) can be written as

" 2l+ 2 = #TBu (4-4)

y =c4

It is an easy task to solve the vector equation Eq. (4-4), using Eq.

(4-3), to obtain

nk+1 = (cossT)Vr + S1 (sinfST)k + n- 2 (I - cosQT) *TBuk (4-5)

;k+1 = -S(sinQT)nk + (cosrT)rk + a1 (sinSIT) T Buk (4-6)

where n = ,(kT), ; = (kT), and sinfT = diag(sin(wiT),...,sin(w T)),
k n

cosfT = diag(cos(wlT),eoo,cos(wnT)) [Ref. 4-2].

Although the first order recursive equations Eqs. (4-5), (4-6)

could be uzed, it is more convenient for our purposes to make use of a

second order recursive equation in •k alone

k+1 -2(cosQT);k + rk-1 S(sinfT)T - u k-) (4-7)

Yk= C k (4-8)

'I
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The modal equations Eqs. (4-,7), (4-8) form the basis for our subsequent

analysis. It is natural to make use of the recursive equation for

alone in considering velocity feedback systems.

It should be noted that relations Eqs. (4-7), (4-8) involve no

numerical approximation; they are valid for any sampling time T > 0.

4.3 Constant Gain Velocity Feedback

Constant gain output velocity feedback has been studied

extensively for analog controlled structures. Our interest is in use of

constant gain output velocity feedback for sampled data controlled

structures.

Consider the closed loop sampled data controlled structure defined

by Eqs. (4-7) and (4-8), using the control input sequence

uk = -Gyk (4-9)

where G is a constant mxm feedback gain matrix. Substituting Eq. (4-9)

into •Eqs. (4-7) and(4-8), a closed loop recursive equation is obtained

T

";k+1 - [2cosaT - 6"' (sin)$ "BGC$]nk

+ [I - n" (sinSIT), T BTGCD]•1k = 0 (4-10)

The closed loop characteristic eq ,on can be written as

d(T,z) = - (2cossIT - --1(sin•T)0TBGCO)z

S(I - Q"' (sinrT) ýTBGCO)] = 0
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The objective of constant gain velocity feedback control is to make the

closed loop as described by Eq. (4-10) geometrically stable, i.e., to

make the closed loop characteristic zeros lie inside the unit disk.

We use Eq. (4-10) as the basis for our subsequent analysis of the

closed loop. If sinrT is nonsingular, the following implications hold:

if ;k+0 as k+a, then necessarily uk+0 as k+÷ and nk+0  as k +-;

consequently Xk+0 and xk+0 as k+c.

4.4 Colocated Velocity Feedback

Recall the following results for constant gain output velocity

analog feedback control where u = -Gy. If colocated force actuators and

velocity sensors are selected so that C = BT, then the closed loop

analog controlled structure is asymptotically stable if G is any

symmetric, positive definite matrix, and if a certain controllability

assumption is satisfied (Refs. 4-3, 4-4, 4-5]. Moreover, this result

* does not depend on the particular values of the modal frequencies and

modal functions.

We first mention a rather obvious result that if the sampled d'ta

feedback control is chosen according to the analog feedback theory, then

the closed loop is stable for sufficiently small sampling time. The

brief proof is included for completeness; it also serves as an

introduction to our subsequent development.

Theorem 4-1. Assume that

%a) C = BT,

(b) the matrix pair (n2, OTB) is completely controllable, and

(c) G is symmetric and positive definite.

Then the closed loop equation Eq. (4-10) is geometrically stable for

sufficiently small sampling time T > 0.
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Proof. Consider the associated polynomial

T 2w2

p(T,w) = det [2(1 + cosaT- 1- (sin7T)$ ( GCD)

I4
+ 2a-1(sinT)I TBGC$-- 2+ 2(I - cosQT)] (4-11)

By assunption the polynomial defined by

lir p(T,w) 1
T+O T

has all zeros in the left-half-plane; hence there'is a number T > 0 such

that p(T,w) hav all its zeros in the left-half-plane for 0 < T < T.

Using the bilinear transformation

1 Tw
Z 2 (4-12)

W-
2

it follows that the zeros of d(T,z) are necessarily inside the disk;

hence Eq. (4-10) is stable. 3

This result has limited application since there is no indication

of the range of values of the sAmpling times, relative to the feedback

gain matrix, required for closed loop stability. In Reference 4-6,

conditions are developed which, in principle, characterize a range of

values of the sampling time for which the closed loop system is stable.

Unfortunately, the conditions depend on an a priori computable bound on

an exponential matrix; computation of such a bound, in analytical terms,

is not considered in Reference 4-6. Of course one could perform a

numerical search, based on the characteristic polynomial d(T,z) (or

equivalently p(T,w)) for a specific case, to determine a range of values
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of the sampling time for which the closed loop is stable. However, for

the case of colocated velocity feedback there are no known explicit

conditions, in terms of the sampling time and feedback gain matrix, which

guarantee stability of the closed loop sampled data system.

4.5 Non-colocated Velocity Feedback

We now present the main result of the paper: a set of explicit

conditions on the sampling time and feedback gain matrix for which the

closed loop sampled data controlled structure is stable. The key idea is

to suitably modify the assumption of colocated force actuators and

velocity sensors.

Theorem 4-2. Assizne that sinsT is nonsingular and

(a) C = B T(sinS1T)-I T-1-I,

(b) the matrix pair .([I + cosQT]-1[I - cosS2T], *TB) is

completely controllable,

(c) G is symmetric and positive definite, and

(d) I + cosS2T - T$TCTGCO is positive definite.

Then the closed loop equation Eq. (4-10) is geometrio:ally stable.

Proof. The assumptions can be shown to guarantee that the zeros of

p(T,w) defined in Eq. (4-11) are in the left-half-plane. The bilinear

transformation defined in Eq. (4-12) guarantees that the zeros of d(T,z)

are necessarily inside the unit disk. Hence Eq. (4-10) is stable. 0

Informally, note that as the sampling time satisfies T+O that from

condition (a), C+BT, and that conditions (b), (c), (d) of Theorem 4-2

tend toward conditions (b), (c) of Theorem 4-1. But for T > 0 the extra

requirement of condition (d) of Theorem 4-2 is imposed on the feedback

gain; this imposes a limit on the "size" of the gain matrix. Conditlon

(a) of Theorem 4-2 implies that the output velocity feedback given by

Eq. (4-2) be selected in a specific way. Clearly the actuators and

sensors would generally not be colocated.
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Conditions (a) and (d) of Theorem 4-2 do depend on explicit

knowledge of the modal frequencies and modal functions and they depend on

the particular value of the sampling time. Unlike the corresponding

analog case, the closed loop, with assumptions of Theorem 4-2 satisfied,

is not robust to arbitrary uncertainties in the modal data and to modal

truncation. However, an arbitrary structure can be stabilized using

sampled data velocity feedback with arbitrary sampling time; the

suggested approach depends on a proper choice of force actuator and

velocity sensor locations so that condition (a) of Theorem 4-2 is

satisfied.

4.6 An Example

As a simple example consider the scalar equations in modal

coordinate form with one actuator input

2
r11 +cj31 n = U

n2 + W2n2 = u

where w2 W2
1 2

Based on Theorem 4-1, the sampled data feedback control

u(t) =-G (kT) + ; 2 (kT)] , kT < t < kT+T,

with G > 0 and wiT * nm, n=0,1,..*; i=1,2 stabilizes the closed loop

for T > 0 sufficiently small. Even in this simple case analytical

conditions on the range of values of the sampling time and the feedback

gain for w.ich the closed loop system is stable are exceedingly

complicated. Evidently a proper choice of values for the feedback gain

and the sampling time would require use of numerical search procedures.
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Now consider the sampled data control

sinwt T sin't2T

u(t) = -GI( ) T I(kT) + W T 2 (kT)], kT < t < kT+T,

where the output is chosen so that condition (a) of Theorem 4-2 is

satisfied; clearly such velocity sensors would not be colocated with the

specified force actuators. On the basis of Theorem 4-2-the closed loop

is guaranteed to be stable if wiT * nir, n=0,1,o..; i=1,2; and if the

relatively simple analytical conditions

(wiT)2 (1 + coswiT)
0 < GT < (sinw.T) , i=1,2

0 < GT < W 1 {T)2 (W 2T)2 (1 + cosw IT)(M + cosw 2T)

2 2 2 2
(W 2T) (1 + cosw2T)(sinwT) + (W 1T) (I + cosw 1T) (sin2T)

are satisfied. Thus proper choice of values for the feedback gain and

the sampling time is considerably simplified.

4.7 Conclusions

We have presented one approach where feedback g.±ins and sampling

time can be readily selected to guarantee that the sampled data

controlled structure is stable. Our conditions imply that force

actuators and velocity sensors be located to satisfy a specific

analytical condition which, in fact, depends on the sampling time. These

explicit results are in contrast to the lack of ava.lable explicit

guidelines for choosing the feedback gains and a sampling time in the

case where colocated actuators and sensors are used.
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SECTION 5

OPTIMAL TRACKING AND TERMINAL TRACKING MANEUVERS

FOR FLEXIBLE SPACECRAFT

5.1 Introduction

The problem of feedback control of flexible spacecraft undergoing

large-angle maneuvers is a topic of continuing interest in the aerospace

community. Two types of closed-loop slewing maneuvers are of particular

interest. First, tracking maneuvers where the control is determined in

such a way as to cause the state to track or follow a desired output

state. Second, terminal trackint' maneuvers where some elements of the

state are required to exactly satisfy nonzero terminal constraints.

The necessary conditions defining the solutions for tracking and

terminal tracking problems are well known. Nevertheless, the

computational burden required to numerically integrate the resulting

systems of coupled nonlinear Riccati-like differential equations has

seriously hindered the common application of these control techniques.

To overcome the computational difficulties noted above, closed

form solutions are presented for the necessary conditions defining the

solutions for the following linear time-invariant control problems:

(a) The linear tracking problem;

(b) The terminal tracking problem;

(c) The state trajectories for the conventional closed-loop

system dynamics equation.

The remainder of the section is presented in three parts. Section

5.2 presents closed form solutions for the Riccati and prefilter
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equations of the linear tracking problem. Maneuver simulations are

presented for both conventional and control-rate-penaLty control designs

(Refs. 5-1, 5-2]. Section 5.3 presents closed form solutions for the

three nonlinear coupled Riccati-like differential equations, defining the

solution for the terminal control problem. Maneuver simulations are

presented for both conventional and control-rate-penalty control

designs. Section 5.4 presents a closed form solution for the state

trajectories of a conventional feedback control system, when the plant

and the state are assumed to be perfectly known. The solution for the

state is presented in a simple recursive form.

5.2 Closed Form Solution for the Linear Tracking Problem

In this subsection the problem of maneuvering a flexible

spacecraft through a large angle is considered, where the feedback

control system is required to track a desired output state. The desired

output state is assuned to be provided from an open-loop solution for the

linear time invariant system model (see References 5-1 and 5-2 for

examples of suitable open-loop solutions).

The optimal control problem of this section is formulated by

defining a performance index which consists of an integral of quadratic
forms in the state, control, and control-rate. The necessary conditions

for this problem lead to two nonlinear Riccati-like differential

equations [Ref. 5-6]. One equation is the standard Riccati equation,

which possesses a well-known solution in terms of a steady-state plus

transient term [Ref. 5-1]. The remaining vector equation is a prefilter

equation which has foreknowledge of the desired output state, and is

coupled to the standard Riccati equation. In Section 5.2.4, a new closed

form solution is presented for the auxiliary Riccati-like vector

equation.
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5.2.1 Optimal Linear Tracking Problem

The optimal reference tracking problem is formulated by finding

the control inputs u(t) to minimize

t f
2 ± zI(t) [ Itz)(t) z(t) 2  22j = .12 Iz*(t -z(t )1 [z*(t) 9s- I + u(t)2 In dt

St (5-1)

for the system

S = Ax + Bu , x(t) = x (5-2)

z = Cx (5-3)

where IpIW = pT Wp, z* is the desired output state, A is the system

dynamics matrix, B is the control influence matrix, C is tne measurement

influence matrix, S is the terminal state weight matrix, Q is the state

weight matrix, R is the control weight matrix, x is the state, and u is

the control. (For maneuvers where the state is augmented by the control

and control-rate penalties, the A and B matrices of Eq. (5-2) are

modified as shown in Reference 5-1).

5.2.1.1 The Open-Loop Control Problem for the Desired Output State

The desired output state, z*(t), in Eq. (5-1) is assumed to be

provided by the solution for the following open-loop control problem,

where we seek the control inputs u*(t) to minimize

tf
. = 2 ) 2  ]d2 (5-4)* f [Ix*(t)l2 + Iu*(t) R*

*1 t0
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for the system

x*= Ax* + Bu*, x*(t) xo, x*(tf = x• (5-5)

Z*= Cx*

As shown in Reference 5-2, the closed form sol.ution for the

open-loop problem defined by Eqs. (5-4) and (5-5) cart be written as

e =x(t-tt 0 o (5-6)

where

A -B(R*)lBT
S = , (5-7)

[Q* -A T

0 (.)**{o* \x (5-8)

(.)
e = the exponential matrix,

X*(t) = the costate vector for the open-loop

solution,

and ýx*x*' ýx*X* are partitions of e(') for t=tf.

To obtain x*(t) from Eq. (5-6), the following mapping equation is

defined:
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x*(t) =H e(t-t (5-9)

where H = [i o] is a (n x 2n) selection operator and x* is (n x 1).

As shown in what follows, the explicit presence of e(") in Eq.

(5-9) permits a closed form solution to be obtained for the prefilter

equation of the linear tracking problem.

5.2.2 Necessary Conditions for the Linear Tracking Problem

The necessary conditions defining the optimal tracking protlem for

Eqs. (5-1), (5-2), and (5-3) are gi,,en by the following Riccati-like

differential equations (Ref. (5-3), pp. 100-102]:

- -PA-A + PBR-IBTp _ CTQc ; P(tf) = csc (5-10)

+ -[• - BR' 1 BTP]Tr - CTQCx* ;•ý(tf) . CTS•*(t ) (5-11)

where the optimal control is given by

u = -R' BT[Px - (5-12)

5.2.3 Closed Form Solution for the Time-Varying Riccati Equation

The solution for Eq. (t-10) has been previously obtained in

References 5-2 and 5-4, and can be written as

-1

P(t) = P + + (t) (5-13)
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where Pss is the solution for the algebraic Riccati equation

T -1s T T-P A-AP + P BR BTP -CQc = 0 (5-14)
ss "5 ss ss

and the closed form solution for O(t) can be shown to be

A(t- (-t

e(t) = + ea f ) - Oje f (5-15)e-T ss T -1 ss

} where A - BR- BTP, 0 =(C TSC-P ss) 1and 0ss satisfies the algebraic

Lyapunov equation

AGs A BR -T -1 T (5-16)

5.2.4 Closed Form Solution for the Prefilter Equation

The solution for g in Eq. (5-11), follows on assuming the product

form solution

9(t) = -1 (t) r(t) (5-17)

where D is dettned by Eq. (5-15) and the linear constant coefficient

vector differential equation for r can be shown to be

_OCTQCX*
r - Ar = sTc*,r(tf = fc scx*(t) (5-18)

(To derive Eq. :5-18) one requires the differential equation for 0 given

by: 0 = Ke + -T - BR- BT).

The solution for e in Eq. (5-18) can oe shown to be

SA r(t) e - f e-A O(T)C TQCx*(,r dTj (5-19)
0
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where the initial condition for the vector r is given by

-Atf tf

r = e GfCTSCx*(tf) + f e -TO(T)C TQcx*(T) dT (5-20)
0ff

0

The solution for the integral expression in Eq. (5-19) follows on

introducing O(t) from Eq. (5-15) and x*(t) from Eq. (5-9) into Eq.

(5-19), leading to

tFt ft
, -AT T SI - T

Sf O (T)C QCx*(T) dT e e-ATD1e dT
o o

t -T X

where

/ D, = OssCTQCH (5-22)

D2 = e [- Atf0f ss]e -A(5-23)

D3 = CTQcH (5-24)

As shown in Reference 5-5, the integrals involving the matrix

exponentials in Eq. (5-21) can be easily evaluated by defining the

constant matrices

I.T
C 

2

0I- , C2 =
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and computing the matrix exponentials

F (t) G (t) F (t) G 2 (t)

C 1 t C 2 t
e e

0 F 2 (t) 0 F 4 (t)

where

it sit _ýTtF (t) e F (t) F e F (t) e1 2 4 3

t - RT
G 1 (t) = e Rt f e-ATD e SIT IT, G 2 (t) = eKTt f t e TD 3 e SIT IT

0 0

As a result, it follows that the integrals in Eq. (5-21) are given by

t

e-K TD e nTd T F T t)G (t) (5-25)f 3 1
0

t e RT T D 3e S1 T IT F T (t)G (t) 
(5-26)f 1 2

0

5.2.4.1 Recursion Relationsnips for the Integrals of Exponential

Matrices

In order to evaluate Eqs. (5-25) and (5-26) at discrete time

steps, the semi-group properties of exponential matrices are now

exploited; yielding the following recursion relationships for the matrix
Cl(n+l)At C 2 (n,ý 1 A".partitions of e and e
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Fj ((n+1)At] = Fj(At) Fi(nAt) , F.(O) , j = 1,2,3,4

G1 [(n+1)At] F (At)G (nAt) + G (At)F2(nAt) , Gt(0) 0

1 1 1 1 2 1

G2 [(n+1)At] = F3(At)G 2(nAt) + G 2(At)F2 (nAt) , G 2(0) = 0

from which the integrals of Eq. (5-25) and (5-26) follow as

(n+) eATDedT = F3[(n+1)At] Gl[(n+I)At] (5-27)
0

(n+l)At -Tfn eA TD 3 e TdT F T[(n+;)AtI G2 [ (n+1)At.] (5-28)f 3° 2

where At = (tf - to)/m and m is the total number of discrete time

steps.

5.2.4.2 Vector Recursion Relationships for r((n+1)Atl

Substituting Eq. (5-27) and (5-28) into Eq. (5-21), yields

(n+1)At -
f e-AT O(T)C TQCX*(T)dT
0

3F T[(n+1)At] Glc(n+1)At]so

+ D2 FT[(14.1 )A.G 2 [(n+1)At Is,

or
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T[ F(n+l)At][F (At)G (flAt) + G (At)F (nAt:)}S

+ D F T[ (n+l)At]{F (At)G (nAt) + G (At)F j(nAt)}s0

where s T = [(x,)T (X*)T]

The number of mathematical operations required in the equation

above can be minimized by defining the following three vector functions

and associated recursion relationships:

x"I[(n+1)At] = G,[(n+1)At]s° = F,(At)x1(nAt) + G (At)x -(nAt), x (0) = 0

x 2 [(n+1)At] = G2[¢n+0)At]s° = F3(At)x 2 ¢nAt) + G 2(At)x 3(nAt); x2 (0) = 0

x 3 [(n+1)At] = F2[(n+0)At~s° = F2 (At)x 3 (nAt); x 3(0) = so

As a result, the recursive expression for the integral in Eq.

(5-19), can be written as

(n+1)At 3
f e-A e(T)c TQCx*(T)d T FT[(n+1)At] x,[(n+1)At]
f

+ D3F [(n+1)At] x 2 (n+l)At]

where the recursion relationships for the matrix partitions G1[(n+1)At]

and G2 [(n+1)At] have been replaced by the vector recursion

relationships for x1[(n+.!)At], x 2 ((n+1)At], and x3[(n+l)At].
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5.2.4.3 Recursion Relationship for 0[(n+I )At]

Subject to the recursion relationships above, the time histories

for P and ý in Eq. (5-12) easily follow, where 0[(n+1)At] in Eq. (5-15)

is given by

0[ (n+1)At] = 0s5 + F1 (At) [O(nAt) - 0ss]FT(At)

and

0(0) %s + F(tf)[of- - %S F3(tf]

5.2.5 Illustrative Examples

The specific model considered in this section (see Figs. 5-1 and

5-2) consists of a rigid hub with four identical elastic appendages

attached symmetrically about the central hub. In particular, the

following idealizations are considered: (i) single-axis maneuvers; (ii)

in-plane motion; (iii) anti-symmetric deformations; (iv) small linear

flexural deformations; (v) only the linear time-invariant form of the

equation of motion is considered; and (vi) the control actuators are

modelled as concentrated torque generating devices. The distributed

control system for the vehicle consists of: (i) a single controller in

the rigid part of the structure, and (ii) a single controller in each

elastic appendage. In the optimal control performance index, however,

the control weighting matrices are adjusted in order to have the rigid

body control provide the primary torque for maneuvering the vehicle,

while the appendage controllers act principally as vibrational

suppressors.

For all cases, the following configuration parameters are assumed:

the moment of inertia of the undeformed structure about the spin axis, I,

is 6764 kg-m 2 ; the mass/length ratio of the four identical elastic

appendages, p, is 0.04096 kg/m; the length of each cantilevered

appendage, L, is 35 m; the flexural rigidity of each cantilevered
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appendage, El, is 1500 kg-m3 /s 2 ; and the radius of the rigid hub, r,

is 1 m. For simplicity, each appendage is assumed to have one -ontroller

located half-way along its span. In the integrations over the mass and

stiffness distributions, the radius of the hub is not neglected in
comparison to the appendage length. In the structural modelincg
equations, the following comparison functions have been adopted as

"assumed modes"

•i ,pOX-r) 1 cos[pw(x-r)/L] + •,P+1[< )/]2
*(xr)=1-cspcr)L + 0.5(-1) ~[pyn(x-r) /L]
p

(p = 1,2,...,n) (5-29)

which satisfy the geometric and physical boundary conditions.

pxr p x=r px=r+ p x=r+L 0 (5-30)

of A clamped free appendage, where (*) d(*)/dx. In addition, full

state feedback is assumed for the results of this section.

The output vector is assumed to be given by

y - f Ty ~~} (5-31)

where

Y, Q central hub angular velocity

Y= our tines the angular velocity at each apperdage controllerlocation relative to the central hub

SY3 = hub angular position

SY4 four times the tia deflection of each appendage

Y= controls and control-rates
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The number of elements in y 2 is given by the number of controllers on

each of the four appendages. The output sub-vector y5 exists when

control-rates are penalized. The elements of y 5 correspond to the

additionally augmented states.

Referring to'Tables 5-la and 5-2, the graphical summaries of the

states and controls are discussed qualitatively in what follows.

Case 1 (Fig. 5-3) presents a terminal controller example maneuver

in which two flexible modes- are controlled in addition to the rigid body

rotation. There are six states in this problem, all of which are

specified at the final time. The time histories for this case are

virtually identical to the results obtained from an open-loop controller

using the same weight matrices in the performance index. The jump

discontinuities in the control torques at the initial and final times are

characteristic of coitrollers with no penalties on the control-rates in

the performance index. As shown in Reference 5-1, the presence of these

discontinuities tends to excite both modeled and unmodeled high frequcny

structural modes.

Case 2 (Fig. 5-4) presents the same maneuver as in Case 1, except

that the performance index now includes penalties on the first and second

time derivatives of the control torques [Ref. 5-2]. Including these

penalties allows the control torques and torque-rates to be specified at

the initial and final times, thereby eliminating the terminal jump

discontinuities in the control profiles. Lor this particular control

problem, the states are augmented to include the control and first time-

derivative of the control, while the second time-derivative of the

control becomeE the commanded input to the augmented system. On

comparing with the results of Case 1, one finds much smoother modal

amplitude and control torque time histories, although the peak torques
and tip deflection are somewhat higher than those in Case 1.
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Case 3 (Fig. 5-5) presents the results of a spin-to-rest maneuver

in which the weight matrices and final conditions are identical with

those of Case 2. The initial conditions are different from those in Case

2, but the time-varying feedback gains are identical. As the plots in

Figure 5-7 show, the terminal controller has little difficulty in

bringing the system to the required final conditions.

Case 4 (Fig. 5-6) presents the results of a spin-to-rest maneuver

where off-nominal plant parameters are used. In particular, the

moment of inertias for the hub and appendages are increased by 10% and

the appendage mass per unit length is decreased by 10%, while the

time-varying feedback gains are computed using the nominal structural

parameters. Although the structural parameters are changed by only 10%,

the overall effect.on the entire structure is quite large. Specifically,

the first and second mode eigenvalues, w2, are increased by 16% and 22%

respectively, while the ratio of the hub moment of inertia to appendage

moment of inertia is increased by 22%. Nevertheless, the plots show that

most of the sta:e variables reach their prescribed terminal boundary

conditions.

In Cases 1 through 4 the results have been compared with the

corresponding open-loop maneuvers, and have been found to be identical

within plotting accuracy, as expected. Furthermore, the closed form

solutions for P(t) and ý(t) have alsc been compared with the backward

integrated solutions of Eqs. (5-10) and (5-11) for verification.

5.3 Closed Form Solution for the Terminal Tracking Problem

In this subsection the problem of maneuvering a flexible

spacecraft through a large angle is considered, wh.re the terminal state

is subject to constraints. The basic approach differs from the standard

linear quadratic regulator design, in that a quadratic penalty term on
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the final value of the state is not incluaed in the performance index.

As a result, the numerical difficulties associated with handling large

terminal penalty matrices are not encountered.

The optimal control problem of this section is specified by

defining a performance index which consists of an integral of quadratic

forms in the state, control, and control-rates, where the terminal state

is subject to constraints. In particular, the terminal constraints

replace the conventional weighted quadratic form in the terminal states.

The necessary conditions for this problem lead to three nonlinear

Riccati-like differential equations [Ref. 5-6]. One equation is the

standard Riccati equation, which possesses a well-known solution in terms

of a steady-state plus transient term (see Eq. (5-13)). On the other

hand, the remaining two equations are coupled to the standard Riccati

equation. In Sections 5.3.3 and 5.3.4, new closed form solutions are

presented for the two auxiliary Riccati-like equations.

5.3.1 Optimal Terminal Controller

The optimal terminal control problem is formulated by finding the

control inputs u(t) to minimize

tf

= 1 f (xT F TQFx + u TRu) dt (5-32)
t

0

for the system

x= Ax + Bu , given x(t ) (5-33)

with outputs
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y =Fx (5-34)

where x, u, A, B, Q, and R are defined following Eq. (5-3), F is the

measurement influence matrix, and the stF.te is subject to the specified

terminal constraints

xi(tf) = x. , i = 1,...,q (q < n) (5-35)

Of particular interest is the fact that the performance index of. Eq.

(5-32) does not contain a terminal weight matrix which penalizes the

final values of the state.

5.3.1.1 Necessary Conditions for the Terminal Tracking Problem

As shown in Reference 5-6, the necessary conditions defining the

optimal solution are given by the following coupled Riccati-like matrix

differential equations

+ PA + ATP - PBR-1BTP + FTQF = 0 ; P(t) 0 (5-36)

(AT -PBRI BT)S = 0 ; S(t f (5-37)
ff

T-1 BTS

= STBR-B s ; G(tf) 0 (5-38)

where X= 1 , 2' . q and the optimal continuous feedback law is

given by

u(t) = -C(t)x(t) - D(t)h (5-39)

where
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C = R BT(P - SG 1-1) (5-40)

D = R- BTsG-1 (5-41)

The control vector u of Eq. (5-39) takes the state vector from x(to) at

time to to p at time tf, while minimizing the cost function of Eq.

(5-32).

In the next section closed form solutions aze presented for Eqs.

(5-36), (5-37), &nd (5-38), thus reducing the solution for the feedback

gains to the direct computation of algebraic equations without numerical

integration.

5.3.2 Closed Form Solution for the Time-Varying Riccati Equation

P(t) = Pss + C (t) (5-42)

where Pss is the solution for the algebraic Riccati equation

-AP - P A + P BR- BTP - FTQF = 0 (5-43)

and the solution for O(t) follows as

A(t-t) - T(tt
O(t) = - e (0 + P s)e (5-44)

where e is the exponential matrix, A = A - BR7iBTP , and the solution

for 0ss is defined by Eq. (5-16).

5.3.3 Closed Form Solution for S(t)

The new solution for S(t) in Eq. (5-37) follows on assuning the

product form solution
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Ss(t) = 0 (t)S (t) (5-45)
C

where 0 is defined by Eq. (5-44) and Sc is to be determined.

Substitution of Eq. (5-45) into Eq. (5-37) leads to the following

linear constant coefficient matrix differential equation for Sc(t):

0t) S (t) 0; Sc(t) = -i S(t (5-46)
C c C f ss f

from which it follows that the solution for S(t) in Eq. (5-45', can be

written as:

s(t) - -e-'(t)e P(t f Ps1 S(tf)

where the differential equation for 0 is given by: =A + OT- BR -BT.

The solution for Sc(t) in Eq. (5-46) can be shown to be

A(t-t
f I1

S (t) = -e P S(tf) (5-47)
c ss f

5.3.4 Closed Form Solution for G(t)

The solution for G(t) in Eq. (5-38) can be shown to be:

G(t) = S T(t)e(t)S(t) + S T(t )P1 S(t ) (5-48)
f ss f

which can be easily verified by direct differentiation.

5.3.5 Calculation of the Optimal Control

The control is computed by writing Eq. (5-39) in the form
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u(t) = -C(t) x(t) -D(t)

= -R 'BT[Pss x(t) + 6-1(t)x(t) + S(t)x (.t)] (5-49)

where x 1 (t) is obtained by solving the following linear equation:

G(t)x1(t) = - S(t)Xc(t)
1

5.3;6 Example Maneuvers

h1e vehicle configuration and system parameters of Section 5.2.5

are assumed for the example maneuvers of this section. Furthermore, full

state feedback is assumed for the results of this section and the output

vector is assumed to be defined by Eq. (5-31).

Referring to Tables 5-lb and 5-3, the graphical summaries of the
states and controls are discussed qualitatively in what follows.

Case 1 (Fig. 5-7) presents a terminal controller example maneuver

in which two flexible modes are controlled in addition to the rigid bod,

rotation. There are six states in this problem, all of which are

specified at the final time. As a result, P, S, and G in Eqs. (5-42),

(5-45), and (5-48) are 6 x 6 matrices. The time histories for this case

are virtually identical to the time histories obtained from the

corresponding open-loop controller, using the same weight matrices in the

performance index. The observed jump discontinuities in the control

torques at the initial and final times are characteristic of this type of

control design.

Case 2 (Fig. 5-8) presents a spin-up maneuver with two flexible

modes controlled, in which the final angle is free to be determined by

the controller. As a result, the P, S, and G matrices have the following

dimensions: P(6x6), S(6x5), and G(5x5). In particular, the final angle
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selected is exactly the angle selected by the analogous open-loop free

final angle transversality conditions [Ref. 5-11.

Case 3 (Fig. 5-9) presents the same maneuver as in Case 1, except

that the performance index now includes penalties on the first and second

time derivatives of the control torques (Ref. 5-2]. Including these

penalties allows the control torques and torque-rates to be specified at

the initial and final times, thereby eliminating the terminal jump

discontinuities in the control profiles. For this particular control

problem, the states are augmented to include the control and first time-

derivative of the control, while the second time-derivative of the

control becomes the commanded input to the augmented system. On

comparing with the results of Case 1. one finds a much smoother modal

amplitude and control torque time history, although the peak torques and

tip deflection are somewhat higher than those in Case 1. The dimensions

of the P, S, and G mLtrices are all 10x10 for Case 3.

Case 4 (Fig. 5-10) presents the same maneuver as in Case 2, with

the additional penalty on the control-rates. As in Case 2, all the

states, controls, and control-rates are specified at the final time for

the terminal controller, except for the maneuver angle, which is not

specified at the final time. As a result, the P, S, and G matrices have

the following dimensions: P(O0x1O), S(10x9), and G(9x9). On comparing

the results with Case 2, the modal amplitude and control torque time

hiscories are found to be much smoother, although tie peak values are

higher. Moreover, the terminal jump discontinuities in the control

torque shown in Case 2 are eliminated in Case 4, thus making it less

susceptible to control spillover.

Case 5 (Fig. 5-11) presents the results of a maneuver in which the

weight matrices and final conditions are identical with those of Case 3.

The iititial conditions are d fferent from those in Case 3, but the

time-varying feedback gains are identical. As the plots in Figure 5-1 0

show, the terminal controller has little difficulty in bringing the

system to the required final conditions.
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Case 6 (Fig. 5-12) presents the results of a maneuver in which the

moment of inertias of the hub and appendages ire inrcreased by 10% and the

appendage ,,nass per unit length is decreased by 10%, while the

time-varying feedback gains are computed using the nominal structural

par&aeters. Although the structural parameters are changed by only 10%,

the overall effect on the entire structure is quite large. Specifically,

the first and second mode eigenvalues, w2, are increased by 16% ind

22%, respectively, while the ratio of the hub moment of inertia to

appendage moment of inertia is increased by 22%. However, the plots show

that with the terminal controller, most of the state variables reach

their prescribed termiaal boundary conditions.

The results of in Cases 1 through 5 have been compared with the

corresponding open-loop maneuvers, and have been found to be identical

within plotting accuracy, as expected. Furthermore, the closed form

solutions for P(t), S(t), and G(t) have also been compared with the

backward integrated solutions for verification.

5.4 An Analyttc Solution for the State Trajectories of a Feedback

Control System

As part of the normal process of a control system design, the

analyst typically is interested in determining the state trajectories for

the controlled system. In practice, this process is straightforward,

since the feedback form of the control can be introduced in the equation

of motion and numeric-ally integrated. Nevertheless, this process can be

computationally intensive if either time-varying control gains are used

or small integration step sizes are required by the presence of high

frequency system dynamics.

In an effoit to overcome the computational difficulties listed

above, a change of variables is presented in this ,rbsection for the
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standard closed-loop system dynamics equation, which permits a closed

form expression to be obtained for the state tirajectories.

5.4.1 Optimal Control Problem

The fixed time linear optimal control problem is formulatc by

finding the control inputs u(t) to minimize

tf

'7 s (xTf FTQFx uTRu) dt (5-50)
2 f f 2 to

x = Ax + Bu given x(t) (5-51)
0

y = FX (5-52)

where x, u, A, B, F, Q, R, and S are defined following iz. (5-3).

As shown in Reference 5-6, the optimal control ". given by

u(t) -R- 1 BTP(t)x(t) (5-53)

where P is the solution for the differential m atrix Ricca.ci equation

T -1 TPtf
P = -AP - PAT+ PBR BP -Q ; P(t S (5-54)

Upon introducing Eq. (5-53) into Eq. (5-51), the standard closed-

loop system dynamics equation follows as
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(t)= [A - BR'IBTP(t)]x(t) ; x x(t ) (0o.5)

(It should be observed that the equation above is the adjoint to the

homogeneous part of Eq. (5-11).)

To obtain the solution for Eq. (5-55), the following closed form

solution for P(t) [Refs. 5-1, 5-3] is introduced in Eq. (5-55):

4 -1
P(t) +9P + (t) (5-56)

where Pss is is defined by Eq. (5-43). The variable O(t) is given by

S= 9s + e [(FTsF- Pss s]e (5-57)

where A = A - BR-1 B P, e(.) is the en-ponential matrix, and the solution

for Oss is defined by Eq. (5-16).

Substituting Eq. (5-56) into Eq. (5-55), yields the modified form

of the closed-loop system dynamics equation

) - [- BR BT(-(t)]x(t) x° = x(t ) (5-58)

where it follows that the equation above is nonautonomous.

5.4.2 Change of Variables for x(t)

To simplify Eq. (5-58) the following coordinate transformation for

the dependent variable x(t) is introduced:
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x(t) = 0(t)r(t) (5-59)

where O(t) is given by Eq. (5-57) and r(t) is a vector function which is

to be deterntin-d.

Upon differentiating Eq. (5-59) we find

or

(-- (e+ CA- BR-lBT)r +G (5-61)

where in Eq. (5-60) has been replaced by: Ke A + OKT -BR-1B.

The differential equation for r is obtained by introducing Eqs.
(5-59) and (5-61) into Eq. (5-38), leading to

0(r + ATr) = 0 (5-62)

from which it follows that the linear constant coefficient vector

differential equation for r is given by

-ATr r = 01(t )x (5-63)
0 00

The solution for r follows as

_-T(t_t
r(t) = e r (5-64)

Substituting Eq. (5-64) into Eq. (5-59) produces the desired

solution for the state trajectories as
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-AT(t-t)
x(t) = e(t)e 0 r (5-65)

5.4.3 Recursion Relationship for Evaluating the State at Discrete Times

If the solution for x(t) is required at the discrete times

tk = to + kAt (k = 1,...,N) for At = (tf - to)/N, then Eq. (5-65)

can be written as

x(tk) Akr, + bk , k = 0,...,N (5-66)

where

ATt -At 1 _TofA e e f T -1. s r
0 58 0 SS 0

Ak = G e-eTAt -AAtk_ ),e t

A = . , b = eJ, k=I.Nk x1k k-1'

5.4.4 Conclusions

Closed form solutions for the feedback gains required by an

optimal linear tracking controller and an optimal terminal controller

have been developed. Results of example maneuvers have been shown which

demonstrate the efficiency and validity of the formulations described.

The use of control-rate Penalties in each case have been shown to improve

the overall system response.
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In addition, a straightforward algorithm has been presented for

generating the state trajectories for a feedback control system. The

algorithm is computationally efficient in that no numerical integration

is required and simple recursion relationships generate the desired

solution at discrete times. Furthermore, this algorithm has significant

potential if used in conjunction with algorithms which attempt to enhance

system robustness, by iteratively refining the weighting matrices

appearing in Eq. (5-50).
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Table 5-la. Test case maneuver descriptions:

linear tracking problem,

Case No. of tf-to k(0' ) of 5f CPU( 2 )
No. Modes ooo ff(sec) (rad) (,"ad/s) (rad) (rad/s) (sec)

1 2 15 0 0 0 0.4 0 27

2 2 15 2 0 0 0.4 0 59

3 2 15 2 0.15 -0.02 0.4 0 58

4 2 1.5 2 0 0 0.4 0 58

Table 5-lb. Test case maneuver descriptions:

terminal tracking rioblem.

Case No. of tf-t k( f 0 f CPU( 2 )
No. Modes ooo ff(sec) (rad) (rad/s) (rad) (rad/s) (sec)

1 2 15 0 0 0 0.4 0 34

2 2 15 0 0 0 (free) 0.04 32

3 2 15 2 0 0 0.4 0 83

4 2 15 2 0 0 (free) 0.04 77

5 2 15 2 0.15 -0.02 0.4 0 83

6 2 15 2 0 0 0.4 0 83

Notes:

1. k denotes the order of the highest time derivative of the control
which is penalized in the performance index.

2. The CPU time is obtained using an Amdahl 470-V/8 with 150 time-
steps for each integration.
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Table 5-2. Weighting matrices for example maneuvers:

linear tracking problem.

Case No. Open-Loop Weighting Matrices( 1 2)

1Q* = diag [1(-5) 1(-3) 1(-3) 1(-3) 1(-3) 1(-3)]

R* =diag [1(-3) 1(0)]

IQ* W ~w wI

= 00 11

W = diag [1(-5) 1(-3) 1(-3) 1(-3) 1(-3) 1(-3)]

2,3,4 W = di&g [I(-9) 1(-9)]

Wll =diag [1(-9) 1(-9)]

R*= diag [1(-3) 1(1)

Closed-Loop Weighting Matrices

1 diag [I (-3)I1(-2)I1(-3)I1(-5)]

R =diag [1(-3) 1(0) ]

2,3, Q = diag [1(-3) 1(-2) 1I(-3) 1(-5) 1(-9) 1(-9) 1(-9) 1(-9)]

R =diag [1(-3) 101)]

Notes:

1. b(a) denotes b x 10a

2. 0 denotes direct sum
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